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Reference-point-independent dynamics of molecular liquids and glasses in the tensorial formalism

Rolf Schilling*
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~Received 6 December 2001; published 23 May 2002!

We apply the tensorial formalism to the dynamics of molecular liquids and glasses. This formalism separates
the degrees of freedom into translational and orientational ones. Using the Mori-Zwanzig projection formalism,

the equations of motion for the tensorial density correlatorsSlmn,l 8m8n8(q
W ,t) are derived. For this we show how

to choose the slow variables such that the resulting Mori-Zwanzig equations are covariant under a change of
the reference point of the body fixed frame. We also prove that the memory kernels obtained from mode-
coupling theory~MCT! including all approximations preserve the covariance. This covariance makes, e.g., the
glass transition point, the two universal scaling laws and particularly the corresponding exponents independent
on the reference point and on the mass and moments of inertia, i.e., they only depend on the properties of the
potential energy landscape. Finally, we show that the corresponding MCT questions for linear molecules can be
obtained from those for arbitrary molecules and that they differ from earlier equations that are not covariant.

DOI: 10.1103/PhysRevE.65.051206 PACS number~s!: 61.20.Lc, 61.25.Em, 61.43.Fs, 64.70.Pf
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I. INTRODUCTION

In this paper we will study the dynamics of a liquid ofN
rigid molecules. We will consider molecules of arbitra
shape, axially symmetric and linear molecules. To desc
molecular liquids there exist two alternatives@1#: a site-site
descriptionor a molecular representation. The first one uses
a partial densityra(xW ,t), a51,2, . . . ,M for the atomic sites
of a molecule whereas the second one separates the 6N(5N)
degrees of freedom into 3N translational and 3N(2N) rota-
tional ones for arbitrary~linear! molecules, which leads to
the molecular densityr(xW ,V,t). V5(f,u,x), with f, u,
and x the Euler angles, characterizes the rotational dep
dence. In the following we will use the transformations

ra~qW ,t !5E d3xra~xW ,t !eiqW xW ~1!

and

r lmn~qW ,t !5 i l~2l 11!1/2E d3xE dVr~xW ,V,t !eiqW xWDmn
l ~V!* ,

~2!

where Dmn
l (V) are Wigner’s rotation matrices withl

50,1,2, . . . ,2 l<m< l and2 l<n< l . This yields

ra~qW ,t !5(
j

eiqW xW j
(a)(t) ~3!

and thetensorialdensities

r lmn~qW ,t !5 i l~2l 11!1/2(
j

eiqW xW j (t)Dmn
l @V j~ t !#* . ~4!

xW j
(a)(t) is the position of the atomic sitea of moleculej at

time t whereasxW j (t) andV j (t)5@f j (t),u j (t),x j (t)# are the
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chosen center and orientation of thej th molecule. The reade
should note that this center neednot coincide with the center-
of-mass position. The corresponding density correlators

Sab~qW ,t !5
1

N
^ra~qW ,t !* rb~qW ,0!& ~5!

and

Skk8~qW ,t !5
1

N
^rk~qW ,t !* rk8~qW ,0!& ~6!

are of particular experimental and theoretical interest. H
we used the shorthand notationk5 lmn. For instance, neu-
tron scattering yields direct information on the partial d
namical structure factorsSab(qW ,t), but it does not allow us
to determine the tensorial correlatorsSkk8(q

W ,t), separately.
In contrast, dielectric, light, and inelastic x-ray scattering e
periments fornonzero qunder some conditions allow us t
determine the tensorial correlators forl 5 l 851 and l 5 l 8
52, but not the partial ones. From the knowledge of t
infinite number of correlatorsSkk8 (qW ,t) one can calculate
the correlatorsSab(qW ,t) ~which are offinite numbers! and
also the neutron scattering cross section@2#. However, the
opposite is not true. This makes the tensorial correlators
perior to the partial ones. But on the other hand, the par
correlators have the advantage that their number isfinite and
that they are independent of any reference point. The se
ration of translational and rotational degrees of freedom
the tensorial formalism, however, requires the choice o
reference point within a molecule. Of course, choosing
center-of-mass position is the natural way. But any ot
choice is allowed as well. Consequently, equations of mot
for the tensorial correlators must becovariant, i.e., they must
keep their form under a shift of the reference point.

The Mori-Zwanzig projection formalism@1,3# allows us
to derive equations of motion forSkk8(q

W ,t). Although they
are not closed, they areexact. In order that the physica
quantities are independent on the reference point, it is
©2002 The American Physical Society06-1
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primary importance to apply the projection formalism
such a way that the resulting Mori-Zwanzig equations
covariant. Their covariance is also crucial from a differe
point of view. For supercooledsimple liquids it has been
demonstrated that the Mori-Zwanzig equations can be clo
by a so-called mode-coupling approximation and that
resulting set of mode-coupling equations yield an ideal gl
transition @4#. For reviews the reader is referred to Re
@5–8#. One of the essential features of this mode-coupl
theory~MCT! is the independence of the long-time dynam
and of the glass transition singularity, of the particle’s ma
i.e., there are no inertia effects except on a microscopic t
scale@5#. This result is in full accordance with the ‘‘potentia
energy landscape’’ description of the glassy dynamics
the glass transition itself as has been stressed by Go¨tze @5#.
This type of approach, originally suggested by Goldstein@9#
and further pioneered by Stillinger and Weber@10#, considers
properties such as minima and saddles of the potential
ergy, which of course do not depend on the mass. An in
esting connection to the MCT glass transition temperatureTc
has been discovered recently for simple liquids@11–13#.
There it has been shown that the dynamical crossover aTc
relates to a geometrical transition atT5Tc , which is caused
by a qualitative change in the topological properties of
potential energy landscape. In order to maintain this relati
ship for molecular liquids the corresponding Mori-Zwanzi
equations and the resulting MCT equations must be cov
ant, which in turn will guarantee the absence of inertia eff
on long time scales. The main motivation of the present c
tribution is to derive for molecular liquids such covaria
equations in the tensorial formalism.

In order to apply the projection formalism one has
choose slow variables. For molecular liquids these
rk(qW ,t) and the corresponding current densities

j k
am~qW ,t !5 i l~2l 11!1/2(

j
y j

am~ t !eiqW xW j (t)Dmn
l @V j~ t !#* ,

~7!

where

v j
am~ t !5H ẋ j

m~ t !, a5T,

v j
m~ t !, a5R.

~8!

Energy density will not be taken into account. Note that
presence of translational and rotational degrees of free
leads to translational (a5T) and rotational (a5R) current
densities. The translational,ẋ j

m(t), and angular velocities
v j

m(t) are given in spherical components, i.e.,m50,1,2.
For the relation between Cartesian and spherical compon
of any vectorxW we adopt the convention of Ref.@14#,

xi5Simxm, xm5S̃m ixi ~9!

with
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~Sim!5
1

A2 S 1 0 21

i 0 i

0 A2 0
D , S̃5S21. ~10!

Here and in the following we will widely use the summatio
convention.rk andk

am are related by the continuity equatio

iLrk~qW ,t !5 ṙk~qW ,t !5 iqkk8
am

~qW !* k8
am

~qW ,t !

[ i @ j k
T~qW ,t !1 j k

R~qW ,t !#
~11!

with L the Liouville operator,

qkk8
am

~qW !5H qmdkk8 , a5T,

~21!mLl ,mm8
2m d l l 8dnn8 , a5R,

~12!

and

Ll ,mm8
m

5H 7
1

A2
@ l ~ l 11!2m~m61!#1/2dm8,m61 , m56,

mdmm8 , m50.
~13!

There are several possibilities to choose slow variab
amongrk and j k

am . The simplest one is to chooserk and

ṙk5 i ( j k
T1 j k

R), i.e., besidesrk we only take the sum of the
longitudinal translational and the‘‘scalar’’ rotational current
densities. Since our main intention is to describe glassy
namics and the glass transition for supercooled molec
liquids the long-time dynamics of the resulting equations
motion must not exhibit inertia effects, i.e., it must be ind
pendent of the massM and the moments of inertiaI i , i

51,2,3. One can show that choosingrk and ṙk does not
fulfill this condition. The simplest choice that is compatib
with the inertia independence of the long-time dynamics is
use

~ I! rk , j k
T , j k

R , k5 lm0 ~ linear molecules!,

~ II ! rk , j k
T , j k

Rm ~arbitrary molecules!.

In order to allow couplings to thetransversal, transla-
tional current density, this can be extended to

~ I8! rk , j k
Tm , j k

R ,k5 lm0 ~ linear molecules!,

~ II 8! rk , j k
Tm , j k

Rm ~arbitrary molecules!.

~I! has already been chosen for a linear molecule in
isotropic liquid@15# and for a liquid of linear molecules@16#
and (II8) has been used for arbitrary molecules@17#. The
account of transversal current density (I8) for linear mol-
ecules has recently been studied in Ref.@18#. It has already
been stressed@19# that for linear molecules the choice~I! in
Refs.@15,16# violates the covariance.

The covariance of the equations of motion will add a fu
ther condition to the choice of slow variables. The set
6-2
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REFERENCE-POINT-INDEPENDENT DYNAMICS OF . . . PHYSICAL REVIEW E 65 051206
slow variables must be closed under a shift of the refere
point. We will see that this condition is not fulfilled by~I!
and (I8), but by ~II ! and (II8).

The outline of our paper is as follows. The following se
tion contains the proof that the Mori-Zwanzig equatio
based on (II8) are covariant. In Sec. III we will show that th
MCT equations obtained from the Mori-Zwanzig equation
by making a mode-coupling approximation for one of t
memory kernels, preserves the covariance. The special
of axially symmetric molecules will be studied in Sec. I
and in Sec. V we will investigate linear molecules. Sect
VI contains a summary and some conclusions. Some tec
cal proofs are given in the Appendixes.

II. COVARIANCE OF THE MORI-ZWANZIG EQUATIONS:
ARBITRARY MOLECULES

Our main concern in this section is the change of
equations of motion in the tensorial representation unde
shift of the reference point. Therefore, we will derive first
Sec. II A the transformation rules for the slow variables a
their correlators. Then we will very briefly describe in Se
II B the derivation of the Mori-Zwanzig equation and wi
finally prove their covariance. The reader should note t
the present section will not involve any approximation.

A. Transformation under a shift of the reference point

Before applying the projection formalism we will just de
termine the transformation ofrk and j k

am under a shift,

xW j~ t !→xW̃ j~ t !5xW j~ t !1auW j~ t !, uuW j~ t !u[1, ~14!

V j~ t !→Ṽ j~ t !5V j~ t !, ~15!

of the reference point positionxW j (t) by auW j (t). From Eqs.
~14! and ~15! we get with Eq.~8!,

ỹ j
am~ t !5y j

am~ t !1H au̇j
m~ t !, a5T,

0, a5R.
~16!

The quantitiesr̃k and j̃ k
am for the shifted reference poin

follow from rk and j k
am by replacing in Eqs.~4! and ~7!

xW j ,V j ,y j
am by xW̃ j ,Ṽ j ,ỹ j

am . r̃k and j̃ k
am again are related by

the continuity equation

ṙ̃k~qW ,t !5 i q̃kk8
am

~qW !* j̃ k8
am

~qW ,t ![ i L̃ r̃k~qW ,t !; ~17!

q̃kk8
am (qW ) will be given below.

In the body fixed frame~BFF! the shift is given by

uW j8~ t ![uW 8 ~18!

for all molecules.uW j (t) in the space fixed frame~SFF! and
uW 8 are related by

uj
i ~ t !5Rii 8@V j~ t !#u8 i8, ~19!
05120
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or in spherical components,

uj
m~ t !5Dmm8

1
@V j~ t !#* u8m8, ~20!

where the matrixR@V j (t)# rotates the SFF into the BFF o
the j th molecule. From Eq.~20! we get immediately

u̇ j
m~ t !5 iq1mm8,l 8m8n8

Rm9* u8m8v j
m9~ t !Dm8n8

l 8 @V j~ t !#* , ~21!

where we took advantage of the diagonality ofqkk8
Rm , with

respect tol andn @cf. Eq. ~12!#.

Replacement ofxW j by xW̃ j introduces inr̃k and j̃ k
am an extra

factor exp@iaqWuW j(t)#. Using the Rayleigh expansion@14#, Eqs.
~18! and ~19! we find

exp@ iaqW uW j~ t !#54p(
k8

i l 8 j l 8~aq!Yl 8m8~Vq!*

3Yl 8n8~u8W !Dm8n8
l 8 @V j~ t !#* , ~22!

where j l(x) are the spherical Bessel functions andVq is the
orientation ofqW .

In the following we will also use the product rule@14#,

@ i l~2l 11!1/2Dmn
l ~V!* #@ i l 8~2l 811!1/2Dm8n8

l 8 ~V!* #

5bkk8k9@ i l 9~2l 911!1/2Dm9n9
l 9 ~V!* #, ~23!

where

bkk8k95 i l 1 l 82 l 9@~2l 11!~2l 811!~2l 911!21#1/2

3C~ l l 8l 9;mm8m9!C~ l l 8l 9;nn8n9!5bk8kk9

~24!

and C( l l 8l 9;mm8m9) are the Clebsch-Gordon coefficient
With Eq. ~16! and Eqs.~21!–~23! we find

r̃k~qW ,t !5Tkk8~qW ;a,uW 8!rk8~qW ,t !, ~25!

j̃ k
am~qW ,t !5Ykk8

am,a8m8~qW ;a,uW 8! j k8
a8m8~qW ,t !. ~26!

The transformation matricesT andY are given by

Tkk8~qW ;a,uW 8!54p~2l 911!21/2

3 j l 9~aq!Yl 9m9~Vq!* Yl 9n9~uW 8!bk9kk8

~27!

and

Ykk8
am,a8m8~qW ;a,uW 8!5Tkk9~qW ;a,uW 8!Uk9k8

am,a8m8~a,uW 8!,
~28a!
6-3
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ROLF SCHILLING PHYSICAL REVIEW E 65 051206
Ukk8
am,a8m8~a,uW 8!5H dmm8dkk8 , a5a8,

Ukk8
mm8~a,uW 8!, a5T, a85R,

0, a5R, a85T,
~28b!

Ukk8
mm8~a,uW 8!5321/2aq1mm9,k9

Rm8* u8m9bk9kk8 . ~28c!

Note thatT(qW ;a,uW ) andU(a,uW 8) commute with each other
It is obvious thatT(qW ;a,uW ) andY(qW ;a,uW ) form a group.

Furthermore, it is easy to prove thatT is unitary,

T~qW ;a,uW 8!†5T~qW ;a,uW !21, ~29!

and that

Uk8k
m8m

~a,uW 8!* 5Ukk8
mm8~2a,uW 8!. ~30!

Equations~25! and~26! can be used in order to derive from
Eqs.~11! and ~17!,

q̃kk8
am

~qW !* 5Tkk9~qW ;a,uW 8!qk9k-
a8m8~qW !* @Y~qW ;a,uW 8!21#k-,k8

a8m8,am ,
~31!

which yields fora5T,

q̃m5qm, ~32!

and for a5R the connection betweenL̃ l ,mm8
m and Ll ,mm8

m

which involvesqm.
The transformation law for the Hermitian matrice

S(qW ,t)5@Skk8(q
W ,t)# andJ(qW ,t)5@Jkk8

am,a8m8(qW ,t)# with

Jkk8
am,a8m8~qW ,t !5

1

N
^ j k

am~qW ,t !* j k8
a8m8~qW ,0!& ~33!

follows immediately from Eqs.~25! and ~26!,

S̃~qW ,t !5T~qW ;a,uW 8!* S~qW ,t !T~qW ;a,uW 8! t, ~34!

J̃~qW ,t !5Y~qW ;a,uW 8!* J~qW ,t !Y~qW ;a,uW 8! t, ~35!

whereS̃kk8(q
W ,t) andJ̃kk8

am,a8m8(qW ,t) is obtained from Eqs.~6!

and ~33! by replacingrk , j k
am by r̃k , j̃ k

am .

B. Covariant Mori-Zwanzig equations

Equations~26! and~28!–~30! demonstrate that the shift o
the reference point introduces a coupling betweenj̃ k

Tm and

j̃ k
Rm . For the longitudinal current density we get from Eq

~26! and ~28!,

j̃ k
T~qW ,t !5Tkk9~qW ;a,uW 8!@ j k9

T
~qW ,t !1qm* Uk9k-

mm8 j k-
Rm8#.

~36!

Because the second term in the square bracket canno

expressed byj k
R(qW ,t)5qkk8

Rm* j k8
Rm(qW ,t) but involves each com
05120
.

be

ponent ofj k8
Rm(qW ,t), the set~I! and (I 8) are not closed unde

a shift of the reference point. Therefore, we have to cho
j k
Rm ,m50,6 as slow variables and notj k

R . Although we
could still choosej k

T , since Eq.~36! shows that it is pre-
served, we also takej k

Tm ,m50,6 as additional variables
Therefore, we introduce the projectors

Pr5 (
k1k2

urk1
~qW !&@S~qW !21#k1k2

^rk2
~qW !* u, Qr512Pr ,

~37!

Pj5 (
k1k2

a1m1 ,a2m2

u j k1

a1m1~qW !&@J~qW !21#k1k2

a1m1 ,a2m2^ j k2

a2m2~qW !* u,

~38!

P5Pj1Pr , Q512P, ~39!

and similarly for P̃r5Pr̃ ,P̃j5Pj̃ , P̃5 P̃r1 P̃j , Q̃r51
2 P̃r , andQ̃512 P̃. The final result~cf. Refs.@15,16#! are
the Mori-Zwanzig equations

Ṡ~qW ,t !1E
0

t

dt8K ~qW ,t2t8!S~qW !21S~qW ,t8!50, ~40a!

Kkk8~qW ,t !5qkk9
am

~qW !kk9k-
am,a8m8~qW ,t !qk8k-

a8m8~qW !* , ~40b!

k̇~qW ,t !1E
0

t

dt8M ~qW ,t2t8!J~qW !21k~qW ,t8!50, ~40c!

and a similar set with S,J,k,K ,M ,qkk8
am replaced by

S̃,J̃,k̃,K̃ ,M̃ ,q̃kk8
am . The memory kernels are given by

kkk8
am,a8m8~qW ,t !5

1

N
^ j k

am~qW !* uexp~2 iQrLQrt !u j k8
a8m8~qW !&,

~41a!

Mkk8
am,a8m8~qW ,t !5

1

N
^~L j k

am~qW !!* uQ exp

~2 iQLQt!QuL j k8
a8m8~qW !&. ~41b!

k̃ and M̃ is obtained by replacingj k
am ,Qr ,Q and, L by

j̃ k
am ,Q̃r ,Q̃, andL̃. Making use of Eqs.~25!, ~26!, ~34!, and

~35! it is easy to prove that the projectors are invariant,

P̃r5Pr , P̃j5Pj , Q̃r5Qr, ~42a!

and, therefore,

P̃5P, Q̃5Q. ~42b!

The invarianceof these projectors is of great importanc
Taking Eqs.~42a! and ~42b! into account we find with Eq.
~26!,

k̃~qW ,t !5Y~qW ;a,uW 8!* k~qW ,t !Y~qW ;a,uW 8! t, ~43a!
6-4
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M̃ ~qW ,t !5Y~qW ;a,uW 8!* M ~qW ,t !Y~qW ;a,uW 8! t. ~43b!

Here we have used that for every phase space functionf (X)

and f̃ (X̃),

L̃ f̃ ~X̃!5L f̃ @X̃~X!#, ~44!

where the canonical transformationX̃(X) of a phase pointX

is generated by the coordinate transformation Eqs.~14! and
~15!. Now, making use of Eqs.~31!, ~34!, ~35!, and ~43a!,
~43b!, it is easy to prove that the corresponding Eqs.~40! for
the correlatorsS̃(qW ,t), K̃ (qW ,t), etc., reduce to the Eqs.~40!

for S(qW ,t), K (qW ,t), etc. This result means that the Mor
Zwanzig equations keep their form, or in other words, th
are covariant under an arbitrary shift of the reference po

III. COVARIANCE OF THE MCT EQUATIONS:
ARBITRARY MOLECULES

The MCT equations are given by Eqs.~40! where the
memory matrixM and M̃ are approximated. In Sec. II w
have shown that the Eqs.~40! are covariant under a shift o
the reference point. Accordingly the MCT equations are
variant if the MCT approximation and eventually further a
proximations for the vertices preserve the transformat
law, Eq. ~43b!. In order to investigate this covariance w
have to derive the memory matrixM (qW ,t) and M̃ (qW ,t) in
MCT approximation. This derivation is given in Ref.@16# in
great detail for linear and is easily extended to arbitrary m
ecules@17#. Here we will repeat only those steps that a
relevant for proving the covariance. The main idea of MC
is to project in Eq.~41b! the fluctuating forceQL jk

am(qW )

onto a pairrk1
(qW 1)rk2

(qW 2) of density modes. Then the slow

part of M (qW ,t) is approximated as follows:

@Mkk8
am,a8m8~qW ,t !#slow

'@M MCT~qW ,t !#kk8
am,a8m8

5
1

2N (
qW 1qW 2

k1k2 ,k28k28

Wam,8m8~qW kk8uqW 1k1k18 ;qW 2k2k28!Sk1k
18

3~qW 1 ,t !Sk2k
28
~qW 2 ,t !. ~45a!

The vertices are given by

Wam,a8m8~qW kk8!uqW 1k1k18 ;qW 2k2k28)

5
1

N2
@S21~q1!#k

19k1
@S21~qW 2!#k

29k2
@S21~qW 1!#k

18k
1-

3@S21~qW 2!#k
28k

2-^@L j k
am~qW !#* Qrk

19
~qW 1!rk

29
~qW 2!&

3^rk
1-
~qW 1!* rk

2-
~qW 2!* QL jk8

a8m8~qW !&. ~45b!
05120
y
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We remind the reader that summation convention with
spect tok i , k i8 , k i9 , andk i- is used. Again,M̃ MCT(qW ,t) is
obtained by replacement of the corresponding quantitie
Eqs.~45! by the quantities with tilde. Doing this and takin
Eqs. ~25!, ~26!, ~34!, ~42b!, and ~44! into account it is
straightforward to prove thatM̃ MCT and M MCT obey the
transformation law Eq.~43b!, i.e., M MCT is covariant.

For practical applications the vertices Eqs.~45! are further
approximated. UsingQ512P, Eqs.~37!–~39! and the her-
miticity of L we get

^@L j k
am~qW !#* Qrk1

~qW 1!rk2
~qW 2!&

5^ j k
am~qW !* L@rk1

~qW 1!rk2
~qW 2!#&

2@S21~qW !#k
18k

28
^ j k

am~qW !* Lrk
18
~qW !&

3^rk
28
~qW !* rk1

~qW 1!rk2
~qW 2!&. ~46!

The vertices become simpler if we apply the following a
proximation for the static three-point correlator~cf. Ref. @16#
for linear molecules!:

^rk1
~qW 1!* rk2

~qW 2!rk3
~qW 3!&

'NdqW 11qW 28qW 3
bk

28k
38k

18
Sk1k

18
~qW 1!Sk

28k2
~qW 2!Sk

38k3
~qW 3!. ~47!

For such additional approximations we must discuss
maintenance of the covariant structure. This means that
have to prove that the right-hand side~rhs! of Eq. ~47! trans-
forms like its left-hand side~lhs!. For the lhs we find with
Eq. ~25!,

^r̃k1
~qW 1!* r̃k2

~qW 2!r̃k3
~qW 3!* &

5Tk1k
18
~qW 1 ,a,uW 8!* Tk2k

28
~qW 2 ,a,uW 8!Tk3k

38
~qW 3 ,a,uW 8!

3^rk
18
~qW 1!* rk

28
~qW 2!rk

38
~qW 3!&. ~48!

In Appendix A we prove the following identity forqW 11qW 2

5qW ~!!:

bk1k2k3
5Tk

18k1
~qW 1 ,a,uW 8!* Tk

28k2
~qW 2 ,a,uW 8!* Tk

38k3

3~qW 3 ,a,uW 8!bk
18k

28k
38
. ~49!

Using Eqs.~34! and~49! it is easy to prove that indeed th
rhs of Eq.~47! transforms like its lhs. Thus we can conclud
that the MCT equations including all approximations tran
form covariantly under a shift of the reference point.

In order to determine how far these MCT equations si
plify for axially symmetricmolecules and reduce to the co
responding MCT equations for linear molecules presente
6-5
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Ref. @16#, we have to determine the explicit form of th
memory kernelM MCT(qW ,t). The MCT equations and th
memory kernel given in Ref.@17# are not identical to Eqs
~40! with memory kernel Eqs.~45! since in Ref.@17# we
used the rotational current density

j k8
Rm~qW ,t !5 i l~2l 11!1/2(

j
v j8

m~ t !eiqW xW j (t)Dmn
l* @V j~ t !#

~50!

in the BFF. The reason has been that those static correla
that involve rotational current densities are much easie
calculate in the BFF where the rotational kinetic energy d
not depend on$V j%. In that case and wherexW j are the center-
of-mass positions, it is

^v j8
m* v j 8

8m8&5kBTIi
21S̃m i* S̃m8 id j j 8 . ~51!

To transform the MCT equations in BFF to those in SFF
must determine the relationship betweenj k8

Rm and j k
Rm . This

is easily done by use of

v j
m~ t !5Dmm8

1
@V j~ t !#* v j8

m8~ t ! ~52!

and the product rule Eq.~23!. The result is as follows:

j k
Rm~qW ,t !5Rkk8

mm8 j k8
8Rm8~qW ,t ! ~53!

with the unitary matrix R,

R kk8
mm85 i l 2 l 8S 2l 11

2l 811
D 1/2

C~1l l 8;mmm8!C~1l l 8;m8nn8!.

~54!

Since rk8(qW ,t)5rk(qW ,t), the continuity equation in BFF
reads

ṙk~qW ,t ![ṙk8~qW ,t !5 iqkk8
8am

~qW !* j k8
8am

~qW ,t !.

Then we get from Eq.~11! with Eq. ~53! and the unitarity of
R,

qkk8
Tm

~qW !5qkk8
8Tm

~qW !,

qkk8
Rm

~qW !5qkk9
8Rm8~qW !R k8k9

mm8 . ~55!

It follows from Eq. ~40c! that the long-time dynamics of th
MCT equations in SFF is governed by the kernel

m~qW ,t !5J21~qW !M MCT~qW ,t !J21~qW !. ~56!

Substituting Eq.~56! into Eq. ~40c! yields

k̇~qW ,t !1J~qW !E
0

t

dt8m~qW ,t2t8!k~qW ,t8!50. ~57!

As already mentioned aboveJ(qW ) andM MCT(qW ,t) can easily
be calculated in the BFF. Taking the result from Ref.@17#
05120
ors
to
s

e

that involvesqkk8
8am(qW ) and making use of Eq.~55! one ob-

tains the explicit form form(qW ,t),

mkk8
am,a8m8~qW ,t !5

1

2N (
qW 1qW 2

(
k1k18 ,

k2k28

Vam,a8m8

3~qW kk8uq1
W k1k18 ;qW 2k2k28!Sk1k

18
~q1
W ,t !

3Sk2k
28
~q2
W ,t !, ~58a!

with the new vertices

Vam,a8m8~qW kk8uqW 1k1k18 ;qW 2k2k28!

5S r0

8p2D 2

(
k9k19

@qk9k
19

am
~qW 1!bk

19k2kck9k1
~qW 1!

1~1↔2!# (
k-k1-

@qk-k
1-

a8m8 ~qW 1!bk
1-k

28k8ck-k
18
~qW 1!

1~1↔2!#* . ~58b!

They involve the direct correlation functionsckk8(q
W ) that are

related toSkk8(q
W ) by the Ornstein-Zernike equation

S~qW !5S 12
r0

8p2
c~qW !D 21

. ~59!

This equation is covariant due to the unitarity ofT.
Note that ~i! the vertices Vam,a8m8 and, therefore,

mam,a8m8(qW ,t) do not depend anymore onM and$I i% explic-
itly, and ~ii ! the MCT equations in the SFF and BFF have t
same form and differ only with respect toqkk8

am (qW ) and

qkk8
8am(qW ), respectively.

This means that they are covariant under transforma
from the SFF to BFF.

The static current density correlators become mostsimple

if xW j are the center-of-mass positions. In that case we ge

Jkk8
Tm,Tm8~qW !5

kBT

M
dmm8dkk8 , ~60a!

Jkk8
am,a8m8~qW !50, aÞa8, ~60b!

and fora5a85R with Eq. ~51! in the BFF,

Jkk8
8Rm,Rm8~qW !5kBTIi

21S̃m i* S̃m8 idkk8 , ~60c!

which with the help of Eq.~53! leads to

Jkk8
Rm,Rm8~qW !5R kk9

m,m9R k8k9
m8,m-kBTIi

21S̃m9 i* S̃m- i . ~60d!
6-6
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IV. MCT EQUATIONS FOR AXIALLY SYMMETRIC
MOLECULES

In this section we will choosexW j as the center of mas
positions, because then the equations become most si
due to the axial symmetry. The equations for arbitraryxW j
follow from Eqs.~40! by the use of the transformation law
~34!, ~35!, and ~43a!, ~43b!. In that case axially symmetric
molecules are characterized by two properties. First, two
the moment of inertia are equal,

I 15I 25I , I 35I 8ÞI , ~61!

and second, the potential energy does not depend on$x j%,

V~$xW j%,$f j ,u j ,x j1nx j%![V~$xW j%,$f j ,u j ,x j%!.
~62!

Equation~61! makes the rotational kinetic energy indepe
dent of $x j%. This together with Eq.~62! implies that the
component of angular momentumL j8

i 53[L j8
m50 ~in the

BFF! is a conserved quantity for each molecule. A seco
consequence of axial symmetry is the diagonality of the c
relators with respect ton,

Skk8~qW ,t !5Slmn,l 8m8n~qW ,t !dnn8 ,

Jkk8~qW ,t !5Jlmn,l 8m8n~qW ,t !dnn8 . ~63!

For the static density correlators one can even prove tha

Skk8~qW !5H Sll8~qW !, ~n,n8!5~0,0!,

dkk8, ~n,n8!Þ~0,0!,
~64!

with

Sll8~qW ![Slm0,l 8m80~qW !, ~65!

and l5( lm). Equation ~64! together with the Ornstein
Zernicke equation~59! yields for the direct correlation func
tion

ckk8~qW !52pcll8~qW !dn0dnn8 , ~66!

cll8(q
W )5(1/2p)clm0,l 8m80(qW ) is the direct correlation func

tion determined byV($xW j%,$ f j ,u j%). The missing third
anglesx j introduce the factor 2p in Eq. ~66!. The fact that
ckk8(q

W ) vanishes for (n,n8)Þ(0,0) will strongly simplify
the mode-coupling matrixm(qW ,t).

The static current density correlators@in case thatxW j co-
incides with the center-of-mass position# also become sim-

pler due to Eq.~61!. Jkk8
am,a8m8(qW ) is still given by Eqs.~60a!

and ~60b! for (a,a8)Þ(R,R), and for a5a85R one gets
from Eqs.~60c! and ~10!,

Jkk8
8Rm,Rm8~qW !5H kBT/Idmm8dkk8 , ~m,m8!Þ~0,0!,

Jkk8
8R0,R0

~qW !, ~m,m8!5~0,0!,
~67!
05120
ple

f

-

d
r-

whereJkk8
8R0,R0(qW ) depends explicitly on$v j8

m50% which are
constant due toL j8

m505const. In principle, this should ex
clude $v j8

m% from canonical averaging. If one is only inte
ested in the slow dynamics of supercooled liquids the ro
tion around the symmetry axis is not particularly interestin
Therefore, let us takev j8

m50(t)[0 that leads to

j k8
Rm50~qW ,t ![0 ~68!

and, therefore,

Jkk8
8R0,R0

~qW ![0. ~69!

Taking Eqs.~67! and ~69! into account we get in the SFF,

Jkk8
Rm,Rm8~qW !5

kBT

I
~dmm8dkk82Ckk8

mm8! ~70!

with

Ckk8
mm85R kk9

m0* R k8k9
m80 . ~71!

The unitarity ofR yields immediately

C25C, ~72!

i.e.,C and therefore12C, too, is a projector. Equations~53!,
~68!, and~71! leads to

Ckk8
mm8 j k8

Rm8~qW ,t !* 5R kk9
m0* j k9

8R0
~qW !* [0, ~73!

i.e., C projects out the rotational current density in the SF
The choice Eq.~68! that has led to Eq.~70!, introduces a

problem since the inverse of@Jkk8
Rm,Rm8(qW )# and, therefore, the

inverse of @Jkk8
am,a8m(qW )# does not exist. This is because1

2C is a projector. However,J21(qW ) has been used inPj for
the derivation of the Mori-Zwanzig equations, only. In th
case we have to choosePj5Pj T1Pj R as follows:

Pj T5(
k,m

u j k
Tm~qW !&

M

NkBT
^ j k

Tm~qW !* u, ~74a!

Pj R5 (
kk8
m,m8

u j k
Rm~qW !&

I

NkBT
~dmm8dkk82Ckk8

mm8!^ j k8
Rm8~qW !* u.

~74b!

Note that the explicit form ofPj T only holds if the reference
point xW j coincides with the center-of-mass position. It is ea
to prove thatPj R is a projector. It simplifies due to Eq.~73!
to

Pj R5(
k,m

u j k
R~qW !&

I

NkBT
^ j k

Rm~qW !* u, ~74c!

such that
6-7
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Pj5 (
kk8

am,a8m8

u j k
am~qW !&„@J(0)~qW !#21

…kk8
am,a8m8^ j k8

a8m8~qW !* u,

~75!

with

Jkk8
(0)am,a8m8~qW !5N

kBT

I a
daa8dmm8dkk8 ~76!

and

I a5H M , a5T,

I , a5R.
~77!

Using Pr from Eq. ~37! and Pj from Eq. ~75! one gets
the Eqs.~40!, ~56!, and ~57!, where J(qW ) is replaced by
J(0)(qW ). The MCT approximation form(qW ,t)5@J(0)(qW )#21

M (qW ,t)@J(0)(qW )#21 is identical to the result Eqs.~58a!,
~58b!, i.e., the explicit expression form(qW , tW) does not de-
pend on whether we ignore the conservation lawv j8

m50 or
not.

After this more general discussion we can now apply E

~66! to Eqs.~58a! and~58b! in order to getmkk8
am,a8m8(qW ,t) for

axially symmetric molecules. The result is as follows:

mkk8
am,a8m8~qW ,t !5

1

2N (
qW 1qW 2

(
l1l18

l2l28

@~••• !Sl1l
18
~qW 1 ,t !Sl2n,l

28n8

3~qW 2 ,t !1~••• !Sl1n,l
18n8~qW 1 ,t !Sl2l

28
~qW 2 ,t !

1~••• !Sl10,l
18n8~qW 1 ,t !Sl2n,l

280~qW 1 ,t !

1~••• !Sl1n,l
180~qW 1 ,t !Sl20,l

28n8~qW 2 ,t !#.

~78!

Here we used Eq.~64!. (•••) stands for the correspondin

vertices. The first observation is thatmkk8
am,a8m8(qW ,t) is obvi-

ously not diagonal inn andn8, because we are not allowe
to assume that Eq.~63! also holds for the solutions
SMCT(qW ,t) of the MCT equations. The diagonal elemen
decompose into two types. The elements withn5n850 only
involve a bilinear productSl1l

18
(qW 1 ,t)•Sl2l

28
(qW 2 ,t), i.e.,

correlators for whichn15n1850 and n25n2850 whereas
the elements with n5n8Þ0 contain, e.g.,
Sl1l

18
(qW 1 ,t)Sl2n,l

28n(qW 2 ,t). The nondiagonal elements als

contain nondiagonal correlators~in n and n8) that in prin-
ciple should vanish because of Eq.~63!. Indeed, we will
show in Appendix B that the MCT equations~40! with
m(qW ,t) from Eq. ~78! imply that Sln,l8n8

MCT (qW ,t)50 for n
Þn8 is a solution and we will prove under certain conditio
05120
.

that it is the only solution. Therefore, we assume th
Sln,l8n8(q

W ,t)[0 for nÞn8 is the only solution. Then it fol-
lows that

mln,l8n8
am,a8m8~qW ,t !5mln,l8n

am,a8m8~qW ,t !dnn8 . ~79!

Hence the MCT equations become diagonal inn andn8. This
has the important consequence@cf. Eq. ~78!# that the MCT

equations forSll8(q
W ,t), which involveml0,l80

am,a8m8(qW ,t) only,

are closed, i.e.,Slnl8n for nÞ0 do not influenceSll8(q
W ,t).

But in contrastSln,l8n(qW ,t) for nÞ0 depend onSll8(q
W ,t).

The MCT equations forSll8(q
W ,t) for axially symmetric

molecules then are given by Eqs.~40a!, ~40b!, and ~57!
where all n,n8,n9, etc., has to be set to zero and by t
memory matrix

ml0,l80
am,a8m8~qW ,t ![~2p!2mll8

am,a8m8~qW ,t ! ~80!

with

mll8
am,a8m8~qW ,t !5

1

2N (
q1
W q2
W

(
l1l18

l2l28

Vam,a8m8~qW ll8uqW 1l1l18 ;

3qW 2l2l28!Sl1l
18
~qW 1 ,t !Sl2l

28
~qW 2 ,t !,

~81a!

Vll8
am,a8m8~qW ll8uqW 1l1l18 ;qW 2l2l28!

5S r0

4p D 2

(
l9l19

@q
l9l

19
am

~q1
W !bl

19l2lcl9l1
~q1
W !

1~1↔2!# (
l-l1-

@q
l-l

1-
a8m8 ~q1

W !bl
1-l

28l8cl-l
18
~q1
W !

1~1↔2!#* , ~81b!

and

qll8
am

~qW !5ql0,l80
am

~qW !, ~82a!

bll8l95bl0,l80,l90 . ~82b!

V. COVARIANT MCT EQUATIONS FOR LINEAR
MOLECULES

In this section we will investigate two points. First of a
we will derive Mori-Zwanzig equations and an MCT expre
sion for the corresponding memory kernel for linear m
ecules that are covariant under a shift of the reference po
Second, we will show that these equations can be obta
from those for arbitrary molecules by taking into account t
axial symmetry.

Linear molecules haveI 850. This property makes the
angular velocityvW j (t) always perpendicular toeW j (t), the unit
vector along the symmetry axis of thej th molecule. In the
6-8
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BFF whereeW j (t) is presented byeW j8[(0,0,1) we, therefore
get

v j8
m50~ t ![0. ~83!

The tensorial densityrl(qW ,t) and current densityj l
am(qW ,t)

~as used in Ref.@16#! for linear molecules are related t
rk(qW ,t) @Eq. ~4!# and j l

am(qW ,t) @Eq. ~7!# by

rl~qW ,t !5rl0~qW ,t !,

j l
am~qW ,t !5 j l0

am~qW ,t !, ~84!

i.e., we have to putn5n850 ~almost! everywhere for quan-
tities of arbitrary molecules in order to get the correspond
quantities for linear molecules, providedxW j is chosen on the
axis of the linear molecule. This rule does not apply, e.g.
the rotational current density in the BFF since Eqs.~53!,
~54!, and~84! imply that j l,n8Rm(qW ,t);dn,2m . Due to Eq.~83!
it must be

j ln8R0~qW ,t !50 ~85!

for all n.
The rotational part of the static current density correla

can also be calculated without the detour via the BFF as d
in Sec. III @cf. Eq. ~60d!#. The calculation is straightforward
but tedious. Therefore, we give the final result~again forxW j ,
the center-of-mass position!, only

Jll8
Rm,Rm8~qW !5kBTI21@dmm8dll82Cll8

mm8#, ~86!

where

Cll8
mm85R ll9

m0* R l8l9
m80 ~87!

with

R ll8
mm85R l0,l80

mm8 ~88!

andR kk8
mm8 from Eq. ~54!. Note that Eq.~54! leads to

R l0,l8n
m0

5R ll8
m0 dn0 . ~89!

It is easy to see that the results forJll8
Rm,Rm8(qW ), Cll8

mm8 and

R ll8
mm8 for linear molecules are identical to the correspond

quantities for axially symmetric particles but withn5n8
50. Furthermore, we can apply Eq.~89! to prove that

Cll9
mm9Cl9l8

m9m85Cll8
mm8 ~90!

and

Cll8
mm8 j l8

Rm
~qW ,t !* [0, ~91!

where we also used Eq.~85!. This demonstrates thatC

5(Cll8
mm8) and, therefore,12C, too, is a projector. Now we
05120
g

o

r
ne

g

can follow directly the argument in Sec. IV in order to sho
that the projectorPj is given by

Pj5 (
l,l8

am,a8m8

u j l
am~qW !&„@„J(0)~qW !#21

…ll8
am,a8m8^ j l8

a8m8~qW !* u

~92!

with

Jll8
(0)am,a8m8~qW !5N

kBT

I a
daa8dmm8dll8 . ~93!

We note that the result~92! can also be obtained fromPj @cf.
Eq. ~38!# for arbitrary molecules by choosing firstI 15I 2
5I and taking the limitI 35I 8 to zero, and second using Eq
~91! and finally replacingk by l. Use ofPr from Eq. ~37!
with k→l and Pj from Eq. ~92! we get the Mori-Zwanzig
equations for linear molecules when the reference poinxW j
coincides with the center-of-mass position,

Ṡll8~qW ,t !

1E
0

t

dt8Kll9~qW ,t2t8!@S21~qW !#l9l-Sl-l8~qW ,t8!50,

~94a!

Kll8~qW ,t !5qll9
am

~qW !kl9l-
am,a8m8~qW ,t !ql8l-

a8m8~qW !* , ~94b!

k̇ll8
am,a8m8~qW ,t !1E

0

t

dt8Mll9
am,a9m9~qW ,t2t8!

3„@J(0)~qW !#21
…l9l-
a9m9,a-m-kl-l8

a-m-,a8m8~qW ,t8!50.

~94c!

These equations are identical to those forSll8(q
W ,t)

[Sl0,l80(qW ,t) of axially symmetric particles. But they
differ from the corresponding equations in Ref.@16#,
due to the presence of them and m8 dependence in Eqs
~94b! and ~94c!. MCT approximates @M (qW ,t)#slow by

M MCT(qW ,t) where @M MCT(qW ,t)#ll8
am,a8m8 is given by

Eqs. ~45! but all k replaced byl. The corresponding
vertices Wam,a8m8(qW ll8uqW 1l1l18 ;qW 2l2l28) involve

^@L j l
am(qW )#* Qrl1

(q1
W )rl2

(q2
W )& that can be calculated by us

ing ~i! L j8
m50Yl(V j )5qll8

8R0Yl8(V j )[0, since the zero com
ponent of the angular momentum vanishes for linear m
ecules in the BFF and~ii ! the approximation for the static
three-point correlator̂rl1

(q1
W )* rl2

(q2
W )rl3

(q3
W )& as used in

Ref. @16#. Note that this approximation also follows from th
result Eq.~47! for arbitrary molecules byk→l. Taking all
this together one finds for

m~qW ,t !5@J(0)~qW !#21M MCT~qW ,t !@J(0)~qW !#21 ~95!

that
6-9
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mll8
am,a8m8~qW ,t !5

1

2N (
q1
W q2
W

(
l1l18

l2l28

Vam,a8m8

3~qW ll8uqW 1l1l18 ;qW 2l2l28!Sl1l
18
~qW 1 ,t !

3Sl2l
28
~qW 2 ,t !, ~96a!

with the new vertices

Vam,a8m8~qW ll8uqW 1l1l18 ;qW 2l2l28!

5S r0

4p D 2

(
l9l19

@q
l9l

19
am

~q1
W !bl

19l2lcl9l1
~q1
W !

1~1↔2!# (
l-l1-

@q
l-l

1-
a8m8 ~q1

W !bl
1-l

28l8cl-l
18
~q1
W !

1~1↔2!#* ~96b!

with qll8
am (qW ) andbll8l9 from Eqs.~82a! and ~82b!, respec-

tively. Comparison with the result Eqs.~81a! and ~81b! for
axially symmetric particles andn5n850 reveals complete
agreement.

What remains is to prove the covariance of the MC
equations for linear molecules under a shift@cf. Eqs.~14! and
~15!# of the reference point. For linear molecules we rest
the shift uW j (t) for simplicity along the symmetry axis. On
can also consider anarbitrary shift. But in that case one
must use the tensorial quantitiesrk(qW ,t) and j k

am(qW ,t) with

n>0, even for linear molecules. ChoosinguW j (t)[eW j (t) we
get as a special case of Eqs.~25! and ~26!,

r̃l~qW ,t !5Tll8~qW ;a!rl8~qW ,t !, ~97!

j̃ l
am~qW ,t !5Yll8

am,a8m8~qW ;a! j l8
a8m8~qW ,t !. ~98!

SinceuW 85(0,0,1) it follows from Eq.~27!,

Tll8~qW ;a![Tl0l80~qW ;a,uW 8!

5A4p (
l 9m9

j l 9~aq!Yl 9m9~Vq!* bl9ll8 ~99!

and from Eqs.~28!,

Yll8
am,a8m8~qW ;a!5Tll9~qW ;a!Ul9l8

am,a8m8~a!, ~100a!

Ull8
am,a8m8~a!5H dmm8dll8 , a5a8,

Ull8
mm8~a!, a5T, a85R,

0, a5R, a85T,
~100b!

Ull8
mm8~a!5321/2aq1m,l9

Rm8* bl9ll8 . ~100c!
05120
t

It is obvious thatT(a) andY(a) have all the same propertie
like the corresponding quantities for arbitrary molecules.

For the derivation of the equations of motion for th
shifted reference point we have to be cautious again with
projectorPj̃ . As seen before,Pj for linear molecules can be
obtained fromPj for arbitrary molecules by the procedur
described below Eq.~93!. We also use this approach to d
termineP̃j[Pj̃ . This yields

P̃j5 (
l,l8

am,a8m8

u j̃ l
am~qW !&„@ J̃(0)~qW !#21

…ll8
am,a8m8^ j̃ l8

a8m8~qW !* u,

~101!

where

J̃(0)~qW !5Y~qW ;a!* J(0)~qW !Y~qW ;a! t. ~102!

P̃r5Pr̃ is obviously given by

P̃r5 (
l,l8

ur̃l~qW !&@S̃21~qW !#ll8^r̃l8~qW !u* . ~103!

Now it is easy to prove~like for arbitrary molecules! that the
projectors are invariant, i.e.,

P̃r5Pr , P̃j5Pj . ~104!

This fact together with the transformation rules Eqs.~97! and
~98! can be used in close analogy to Sec. II B to prove t
the Mori-Zwanzig equations Eqs.~94a!, ~94b!, and~94c! are
covariant under a shift of the reference point.

ThatM MCT(qW ,t) andm(qW ,t) for linear molecules are also
covariant can be proved by use of Eqs.~97! and ~98!, and

bl1l2l3
5Tl

18l1
~qW 1 ;a!* Tl

28l2
~qW 2 ;a!* Tl

38l3
~qW 3 ;a!bl

18l
28 ,l

38
,

~105!

which follows directly from Eq.~49!. The proof of the cova-
riance ofM MCT(qW ,t) and m(qW ,t) follows exactly the same
steps as in Sec. III for arbitrary molecules. Accordingly t
MCT equations~94a!, ~94b!, and ~94c! with the memory
matrix given by Eqs.~95!, ~96a!, and ~96b! including all
approximations are covariant in contrast to the MCT eq
tions presented in Refs.@15,16#.

VI. SUMMARY AND CONCLUSIONS

We have derived equations of motion for the correlat
Skk8(q

W ,t) andSll8(q
W ,t) in the tensorial representationfor a

liquid of arbitrary and linear molecules, respectively. The
equations do not change their form under a shift of the r
erence point. The form invariance also holds for the MC

approximation of the memory matrixMkk8
am,a8m8(qW ,t) and

Mll8
am,a8m8(qW ,t) including all approximations for the vertices

This so-called covariance means that if one has obtaine
solutionSMCT(qW ,t) for one choice of the reference point, on
6-10



t

ry
or

rt
fo

-

he
n

-
fo
e
a

ue

it

t

t

o
o

n
t
s
T
e

liq
s

icit

re-
t

,

ar
ns
-

rect
n?

-

nsi-
ill

,

y
or
has
an
ts.
s
ent

c-
rent

o-
rive
l-

ors
r

of
ons
at
les

he

REFERENCE-POINT-INDEPENDENT DYNAMICS OF . . . PHYSICAL REVIEW E 65 051206
obtains the solutionS̃MCT(qW ,t) for another reference poin
just from

S̃MCT~qW ,t !5T~qW ;a,uW 8!* SMCT~qW ,t !T~qW ;a,uW 8! t.
~106!

As shown in Sec. II, the original MCT equations for arbitra
molecules@17# are indeed covariant, but this is not true f
the linear molecule in an isotropic liquid@15# and the liquid
of linear molecules@16#, as already stressed in Ref.@19#.
Since the covariance guarantees that the physical prope
do not depend on the reference frame it is important
molecular liquids of linear particles to use Eqs.~94a!, ~94b!,
and ~94c! together with the memory matrix from Eqs.~95!,
~96a!, and ~96b!. The modification for a single linear mol
ecule in an isotropic liquid is straightforward.

The ideal glass transition is an example for which t
physical behavior should be independent of the refere
point. The MCT equations first derived by Go¨tze and co-
workers@4–6# for simple liquidsyield a transition at a criti-
cal temperatureTc or a critical densitync from an ergodic
~liquid! to a nonergodic phase~glass!. This transition is in-
terpreted as an ideal glass transition. The extension tomo-
lecular liquids has been done in Ref.@20# within a site-site
description and in Refs.@15–17# by use of the tensorial rep
resentation. In this respect we mention that the reported
mulas in Ref.@20# did not yield the correct equations in th
isotropic limit, i.e., where the particles become spheric
The corrected equations were presented in Ref.@19#.

The nonergodicity parameters Fkk8(q
W )5 limt→`

Skk8(q
W ,t) and Fll8(q

W )5 limt→` Sll8(q
W ,t) change atTc or

nc discontinuously from zero in the liquid to a nonzero val
in the glass. Since it is for, e.g., arbitrary molecules,

lim
t→`

Skk8~qW ,t !5H 0, T.Tc or n,nc,

Fkk8~qW !.0, T<Tc or n>nc ,

we get from Eq. ~106! that F̃kk8(q
W )5 limt→` S̃k,k8(q

W )
changes from zero to nonzero at thesamecritical point. This
demonstrates that the covariance leads to a glass trans
that does not depend on the reference point.

Furthermore, the covariance assures that the same is
for the critical exponenta, the von Schweidler exponentb
that describe the time and frequency dependence in
b-relaxation regime@5#, and for the exponentg that deter-
mines the power law divergence of thea-relaxation time by
approachingTc ~or nc) from above~or below! @5# provided,
these scaling laws are valid for the molecular version
MCT, as well. These few examples demonstrate the imp
tance of the covariance of the MCT equations.

In addition, the covariance also guarantees that the lo
time dynamics and the glass transition is independent on
inertia parametersM and$I j%. This means that the propertie
of the long-time dynamics obtained from the covariant MC
depend on the potential energy landscape only. This nic
agrees with recent numerical investigations for simple
uids @11–13#. It would be interesting to perform analogou
numerical studies for a molecular liquid.
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Here a comment may be in order. To obtain the expl
time dependence ofSkk8(q

W ,t) from the MCT equations they
have to be solved numerically. This numerical treatment
quires a truncation of the infinite-dimensional matrices al
5 l co,`. This truncation destroys the covariance forarbi-

trary shifts auW 8 of the reference point. BecauseT(qW ;a,uW 8)
→1 and Y(qW ;a,uW 8)→1 for a→0 the physical properties
however, will be practically the same for ‘‘a’’ small enough.
Or in other words: for givenl co and accuracyd, of, e.g., the
critical temperatureTc , there existsa( l co ,d) such that
uTc(aÞ0)2Tc(a50)u,d for all a,a( l co ,d). It is obvious
that a( l co ,d) increases withl co and that liml co→`a( l co ,d)

5`.
Now, the reader may ask: If one would be able for line

molecules to solve the original noncovariant MCT equatio
@16,18# without a l cutoff and would compare with the solu
tion of the covariant equations withl co,`, how could one
disentangle the effect of noncovariance due to the incor
structure of the former equations from that due to truncatio
If l co is rather small, e.g.,l co52, it is not possible to disen
tangle both effects. But, we do not expect anyqualitative
difference for the glassy properties such as the glass tra
tion point or the long-time dynamics. These features w
differ from each other onlyquantitatively. On the other hand
e.g., the nonergodicity parametersf lmn,l 8m8n8(q

W ) converge to
zero for increasingl and l 8. Therefore, if one systematicall
increasesl co in the covariant theory, the quantitative err
due to truncation can be made rather small. Although this
not been checked for a molecular liquid up to now, we c
imagine thatl co510 already yields rather accurate resul
Hence, variation ofl co for the covariant set of equation
allows us to disentangle both effects, although the pres
computational power is not large enough to studyl co510.

The crucial point for the covariance forlinear molecules
has been the use of each individual component of therota-
tional current density as a slow variable. Although not ne
essary, this has also been done for the translational cur
density in order to allow for a coupling to transverse~trans-
lational! current density, as it was done in Ref.@18#. This
choice for linear molecules is not only essential for the c
variance of their MCT equations but also that one can de
the MCT equations for linear from those for arbitrary mo
ecules by choosingI 15I 25I and taking the limitI 35I 8 to
zero. We have also shown thatSl0,l80(qW ,t) for axially sym-
metric molecules decouple from all the other correlat
Sln,l8n(qW ,t), n.0, and obey the MCT equations for linea
molecules, as one expects.

To conclude, we can say that the tensorial formalism
molecular dynamics allows us to derive covariant equati
of motion even including the MCT approximation and th
the corresponding equations of motion for linear molecu
are a special case of those for arbitrary ones.
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APPENDIX A

In this appendix we will prove the identity Eq.~49!. Let

rk
(0)~qW ,xW ,V!5 i l~2l 11!1/2eiqW xWDmn

l ~V!* ~A1!

and

r̃k
(0)~qW ,xW ,V!5rk

(0)~qW ,xW̃ ,V!, ~A2!

then we have from Sec. II,

r̃k
(0)~qW ,xW ,V!5Tk,k8~qW ;a,uW 8!,rk8

(0)
~qW ,xW ,V!. ~A3!

Then we get
f

i-

in

ic
e

05120
p-
-

1

8p2E dVDm1n1

l 1 ~V!* Dm2n2

l 2 ~V!* Dm3n3

l 3 ~V!

5~2 i ! l 11 l 22 l 3@~2l 111!~2l 211!~2l 311!#21/2bk1k2k3

~A4!

for the following expression:

1

V

1

8p2E d3xE dVr̃k1

(0)~q1
W ,xW ,V!

3 r̃k2

(0)~q2
W ,xW ,V!r̃k3

(0)~q3
W ,xW ,V!*

5dqW 11qW 2 ,qW bk1k2k3
. ~A5!

On the other hand we can use Eq.~A3! to calculate the lhs of
Eq. ~A5! which yields
lhs of Eq.~A5)5Tk1k
18
~q1
W ;a,uW 8!Tk2k

28
~q2
W ;a,uW 8!Tk3k ’ 3

* ~qW ;a,uW 8!
1

V

1

8p2

3E d3xE dVrk
18

(0)
~qW 1 ,xW ,V!rk

28
(0)

~qW 2 ,xW ,V!rk
38

(0)
~qW 3 ,xW ,V!*

5@T21~q1
W ;a,uW 8!#k

18k1
* @T21~q2

W ;a,uW 8!#k
28k2

* @T21~q3
W ;a,uW 8!#k

38k3
bk

18k
28k

38
, ~A6!
e
a-

o

of
-

where we used the unitarity ofT. Comparison of the rhs o
Eqs.~A5! and ~A6! yields the identity Eq.~49!.

APPENDIX B

In this appendix we will prove that under certain cond
tions the nondiagonal elementsSln,l8n8(q

W ,t) and

kln,l8n8
am,a8m8(qW ,t)(nÞn8!) of the MCT solutions vanish for allt

for axially symmetric molecules provided the reference po
xW j coincides with the center-of-mass position.

First of all it is rather easy to prove that

]n

]tn
Sln,l8n8~qW ,t !u t5050,

]n

]tn
kln,l8n8

am,a8m8~qW ,t !u t5050~nÞn8!, ~B1!

for all n>0. This follows by induction from Eqs.~40a!,

~40b!, and~57! with mkk8
am,a8m8(qW ,t) from Eq. ~78! by taking

into account the initial condition given by Eq.~B1! for n
50 and 1. If solutions of the MCT equations were analyt
Eq. ~B1! would hold forall t. Concerning the smoothness w
will only assume continuity int in the following, and not
analyticity.
t

,

It is easy to prove thatSln,l8n8(q
W ,t)[0 for nÞn8 is a

solution of the MCT equations. We will prove that it is th
only solution. To proceed we decompose the correlation m
trices in their diagonal and nondiagonal part with respect tn
andn8, which will be denoted by (8) and (9), respectively.
Then we get from Eqs.~40a! and ~57!,

S9~qW ,t !52E
0

t

dt8E
0

t8
dt9@K 8~qW ,t82t9!S8~qW !21S9~qW ,t9!

1K 9~qW ,t9!S8~qW !21S8~qW ,t82t9!

1K 9~qW ,t82t9!S8~qW !21S9~qW ,t9!#, ~B2!

k9~qW ,t !52J8~qW !E
0

t

dt8E
0

t8
dt9@m8~qW ,t82t9!k9~qW ,t9!

1m9~qW ,t9!k8~qW ,t82t9!

1m9~qW ,t82t9!k9~qW ,t82t9!#. ~B3!

Here we have integrated Eqs.~40a! and ~57! over time and
used the initial condition~B1! for n50. Furthermore, the
static correlatorsS(qW ) andJ(qW ) we used were diagonal inn
and n8. We want to prove that the quantities on the lhs
Eqs.~B2! and ~B3! are zero. For this we will make the fol
lowing assumptions for the diagonal elements:
6-12
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sup
t,qW ,n

(
l,l8

uSln,l8n
8 ~qW ,t !u5So,`, ~B4a!

sup
t,qW ,n

(
l,l8

u@K ~qW ,t !S8~qW !21#ln,l8nu5Ko,`, ~B4b!

sup
t,qW ,n

sup
a,a8
m,m8

(
l,l8

uk8 ln,l8n
am,a8m8~qW ,t !u5ko,`, ~B4c!

sup
t,qW ,n

sup
a,a8
m,m8

(
l,l8

u@J8~qW !m8~qW ,t !#ln,l8n
am,a8m8u5mo,`,

~B4d!

and for the nondiagonal elements,

sup
t<T

sup
qW

(
k,k8

uSkk8
9 ~qW ,t !u5s~T!,`, ~B5a!

sup
t<T

sup
qW

(
k,k8

u@K 9~qW ,t !#@S8~qW !21#kk8u5k~T!,`,

~B5b!

sup
t<T

sup
qW

sup
a,a8
m,m8

(
k,k8

uk9k,k8
am,a8,m8~qW ,t !u5g~T!,`, ~B5c!

and for the vertices,

sup
qW

sup
a,a8
m,m8

sup
k1k18

k2k28

1

2N (
q1
W q2
W

k,k8

(
k9,a9,m9

uJ8 kk9
am,a9m9~qW !

3Va9m9,a8m8~qW k9k8uq1
W k1k18 ;q2

W k2k28!u5Vo,`. ~B6!

Note that in Eqs.~B5! the supremum is taken overt<T,
only.

Due to the continuity of the correlators and due to E
~B1! for n50, it is

s~T!→0, k~T!→0, g~T!→0, T→0. ~B7!

Now, taking the modulos of the nondiagonal pa

m9 kk8
am,a8m8(qW ,t) from Eq. ~78! one gets with Eqs.~B4! and

~B6!,

sup
t<T

sup
qW

sup
a,a8
m,m8

(
k,k8

u@J8~qW !m9~qW ,t !#kk8
am,a8m8u

<Vo@So1s~T!#s~T!. ~B8!
05120
.

t

The upper bound on the rhs of Eq.~B8! converges to zero
due to Eq.~B7!. Next, making use of Eqs.~B4!, ~B5!, and
~B8! we find from Eqs.~B2! and ~B3!,

sup
t<T

sup
qW

(
k,k8

uSkk8
9 ~qW ,t !u

<@Kos~T!1Sok~T!1s~T!k~T!#
1

2
T2 ~B9!

and

sup
t<T

sup
qW

sup
a,a8
m,m8

(
k,k8

uk9 kk8
am,a8m8~qW ,t !u<6@mog~T!

1Vo@So1s~T!#s~T!@ko1g~ t !##
1

2
T2, ~B10!

where the factor 6 in Eq.~B10! originates from(a9,m91
56.

Now let

s~T!1k~T!1g~T![m~T!.0, ~B11!

then we get from Eqs.~B9!, ~B10!, and~B11!,

m~T!<$@Ko1So16mo16VoSoko11#m~T!

1@116Vo~ko1So!#m2~T!1m3~T!%
1

2
T2, ~B12!

where we used the relation, e.g., thats(T)<m(T),
s(T)k(T)<m2(T), etc.

Since the coefficients ofmn(T) on the rhs of~B12! and
m(T) are positive, andm(T)→0 for T→0 it is obvious that
there is a finiteTo.0 such that forT<To the rhs of~B12!
becomes smaller than its lhs due to the factorT2, which is a
contradiction. Therefore, it must bem(T)50, for all T
<To . Since s(T)>0, k(T)>0, and g(T)>0 Eq. ~B11!
implies that

s~ t !50, k~T!50, g~T!50, ;T<To ,

and this in turn proves that the nondiagonal part~in n and
n8!) of the correlators vanishes forT<To .

To prove that this result holds for allT one restricts Eqs.
~40a!, ~40b!, and ~57! to t>To with the new initial condi-
tions,

Sln,l8n8~qW ,To!50, kln,l8n8
am,a8m8~qW ,To!50, nÞn8.

~B13!

Introducing the ‘‘shifted’’ functions

S̃ln,l8n8~qW ,t !ªSln,l8n8~qW ,To1t !, etc., ~B14!
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the Eqs.~B2! and ~B3! keep their form forS̃9(qW ,t) and

k̃9(qW ,t) with the only difference that the (t82t9)-dependent
kernels are the old ones. Then, following again the proced

described above, one finds that there existsT̃o.0 such that
the nondiagonal part of the correlators vanish
ry

05120
re

r

T<ToT<To1T̃o . Now ‘‘shifting’’ again by To1T̃o the

equations for S̃̃9(qW ,t) and k̃̃9(qW ,t) are the same as fo
S̃9(qW ,t) andk̃9(qW ,t). Therefore, it follows that the nondiago
nal part of the correlators vanishes forT<To12T̃o . Iterat-
ing this procedure infinitely many times completes the pro
F.
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