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Reference-point-independent dynamics of molecular liquids and glasses in the tensorial formalism
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We apply the tensorial formalism to the dynamics of molecular liquids and glasses. This formalism separates
the degrees of freedom into translational and orientational ones. Using the Mori-Zwanzig projection formalism,
the equations of motion for the tensorial density correlaﬁqﬁ:ﬁym/n/(ﬁ,t) are derived. For this we show how
to choose the slow variables such that the resulting Mori-Zwanzig equations are covariant under a change of
the reference point of the body fixed frame. We also prove that the memory kernels obtained from mode-
coupling theory(MCT) including all approximations preserve the covariance. This covariance makes, e.g., the
glass transition point, the two universal scaling laws and particularly the corresponding exponents independent
on the reference point and on the mass and moments of inertia, i.e., they only depend on the properties of the
potential energy landscape. Finally, we show that the corresponding MCT questions for linear molecules can be
obtained from those for arbitrary molecules and that they differ from earlier equations that are not covariant.
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. INTRODUCTION chosen center and orientation of ffth molecule. The reader
_ . _ o should note that this center needt coincide with the center-
In this paper we will study the dynamics of a liquid Nf  of-mass position. The corresponding density correlators
rigid molecules. We will consider molecules of arbitrary
shape, axially symmetric and linear molecules. To describe -1 TR
molecular liquids there exist two alternativel: a site-site Sap(dit) = [ {Pa(A:D)* p4(d,0)) (5
descriptionor amolecular representationThe first one uses
a partial densityp (x,t), «=1,2, ... M for the atomic sites and
of a molecule whereas the second one separatesNOgN) 1
degrees of freedom intoNB translational and R(2N) rota- S (G.t)=— 3% 0 .,(4.0 6
tional ones for arbitrarylinean molecules, which leads to o (A1) N<p"(q’ VP (d.0) ©)

the molecular density(x,Q,t). Q=(¢,6,x), with ¢, 6, . . L
and y the Euler anglfs( char;cteriz(e(i thg)rotationﬁl depen"’-lre of particular experimental and theoretical interest. Here
dence. In the following we will use the transformations we used the shorthand notatiern=Imn. For instance, neu-

tron scattering yields direct information on the partial dy-
namical structure factorSaﬁ(ﬁ,t), but it does not allow us
to determine the tensorial correlatc$§,<,(ﬁ,t), separately.

In contrast, dielectric, light, and inelastic x-ray scattering ex-
and periments fomonzero qunder some conditions allow us to
determine the tensorial correlators foel’=1 and =1’

p,mn(ﬁ,t)=i'(2I+1)1/2J dSXJ dQp(x,Q,0)e9D! (Q)*, =2, but not the partial ones. From the knowledge of the
2) infinite number of correlators,.,.: (g,t) one can calculate

| _ _ . . the correIatorsSaB(ﬁ,t) (which are offinite number$ and
where D, (1) are Wigner's rotation matrices with  also the neutron scattering cross sectigh However, the

pa(Gt)= f d%xp (X, 1) €l (1)

=0,1,2...,—Ism=I| and—I=<n=lI. This yields opposite is not true. This makes the tensorial correlators su-
perior to the partial ones. But on the other hand, the partial
(0,1 = E RERRIO (3)  correlators have the advantage that their numbénite and
i

that they are independent of any reference point. The sepa-
ration of translational and rotational degrees of freedom in
and thetensorialdensities the tensorial formalism, however, requires the choice of a
reference point within a molecule. Of course, choosing the
pimn( @0 =i'(21 + 1) V2> eidij(t)Dlmn[Qj(t)]*_ (4) ~ center-of-mass position is the natural way. But any other
i choice is allowed as well. Consequently, equations of motion
. for the tensorial correlators must bevariant i.e., they must
x}a)(t) is the position of the atomic site of moleculej at  keep their form under a shift of the reference point.
timet Wherea§j(t) andQ;(t)=[¢;(t),0;(t),x;(t)] are the The Mori-Zwanzig projection formellisrﬁl,3] allows us
to derive equations of motion fd8,,(q,t). Although they
are not closed, they arexact In order that the physical
*Email address: rolf.schilling@uni-mainz.de quantities are independent on the reference point, it is of
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primary importance to apply the projection formalism in 1 0 -1

such a way that the resulting Mori-Zwanzig equations are i . . o
covariant. Their covariance is also crucial from a different (S%)= _2 : b S=S (10)
point of view. For supercooledimple liquids it has been 0 V2 o0

demonstrated that the Mori-Zwanzig equations can be closed

by a so-called mode_coup"ng approximation and that thé‘|ere and in the fO”OWing we will W|de|y use the Summation
resulting set of mode-coupling equations yield an ideal glas§onventionp, andj;* are related by the continuity equation
transition [4]. For reviews the reader is referred to Refs.

[5—8]. One of the essential features of this mode-coupling iLp(Q,1)=p.(q,t)=iq, 5 (q)*J 1 (q,t)
theory(MCT) is the independence of the long-time dynamics

and of the glass transition singularity, of the particle’s mass, Ei[jz((i,t)ﬂf((i,t)]

i.e., there are no inertia effects except on a microscopic time (11

scale[5]. This result is in full accordance with the “potential o

energy landscape” description of the glassy dynamics andith L the Liouville operator,
the glass transition itself as has been stressed tyeGb].

This type of approach, originally suggested by Goldsféin

and further pioneered by Stillinger and Welb#@], considers
properties such as minima and saddles of the potential en-
ergy, which of course do not depend on the mass. An interand
esting connection to the MCT glass transition temperaftyre .
has been discovered recently for simple liquidd-13. _ 2 _
There it has been shown that the dynamical crossovéy, at L= +ﬁ[|(| 1) =mmED) o 1, p=
relates to a geometrical transition®& T, which is caused ‘
by a qualitative change in the topological properties of the
potential energy landscape. In order to maintain this relation- (13

ship for molecularliquids the corresponding Mori-Zwanzig There are several possibilities to choose slow variables

equations and the resulting MCT equations must be covariamongp and j“*. The simplest one is to chooge. and
ant, which in turn will guarantee the absence of inertia effect " *

_iriTo iRy ;
on long time scales. The main motivation of the present conpk_.'(JK.ﬂK)’ €., _be5|de$>K we only 'Eake the sum of the
tribution is to derive for molecular liquids such covariant longitudinal translational and théscalar” rotational current

equations in the tensorial formalism. densities. Since our main intention is to describe glassy dy-

In order to apply the projection formalism one has tonamics and the glass transition for supercooled molecular

choose slow variables. For molecular liquids these aré'qm_ds the long-time _dyn_amk_:s of the re_:sulti_ng equatio_ns of
- ) . motion must not exhibit inertia effects, i.e., it must be inde-
p.(g,t) and the corresponding current densities

pendent of the masM and the moments of inertig, i
=1,2,3. One can show that choosipg and p, does not

q”’ékkr, a=T,
(—1) L 8y 8, a=R,

I,mm’

Qe (q) = (12)

mﬁmm,, ,LLZO

ncd D =il(2] +1)2 am( ) aidxi (! R fulfill this condition. The simplest choice that is compatible
Han=re+) 2 v O (0], with the inertia independence of the long-time dynamics is to
(7) use
where () pesigiins «=ImO (linear molecules
_ (1) p,,j5,i%*  (arbitrary molecules
X, o=T, |
(= u (8) In order to allow couplings to théransversal transla-
of (1), a=R. tional current density, this can be extended to

. . i ’ T R ;
Energy density will not be taken into account. Note that the (I") psii" Jic,k=ImO  (linear molecules
presence of translational and rotational degrees of freedom

leads to translationala(=T) and rotational &=R) current
densities. The translationakf‘(t), and angular velocities () has already been chosen for a linear molecule in an

(") pe,it™,jR*  (arbitrary molecules

K 'k

f'(t) are given in spherical components, i.e.=0,+,—.  jsotropic liquid[15] and for a liquid of linear molecule<6]
For the relation between Cartesian and spherical componenisd (1I') has been used for arbitrary moleculgs]. The
of any vectorx we adopt the convention of Rgf14], account of transversal current density)(ffor linear mol-

ecules has recently been studied in R&8]. It has already
been stresseld 9] that for linear molecules the choi¢b in
Refs.[15,16 violates the covariance.

The covariance of the equations of motion will add a fur-
with ther condition to the choice of slow variables. The set of

Xi=GHyr — xHh=GHyi 9)
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slow variables must be closed under a shift of the referencer in spherical components,

point. We will see that this condition is not fulfilled by)

and (I'), but by (II) and (II'). u“(t)=D* [Q.(t)]*u'~ (20)
The outline of our paper is as follows. The following sec- ! p -

tion contains the proof that the Mori-Zwanzig equations

based on (I1) are covariant. In Sec. Il we will show that the

MCT equations obtained from the Mori-Zwanzig equations,

by making a mode-coupling approximation for one of the "y )

memory kernels, preserves the covariance. The special case Uf‘(t)=iqul‘:u,yl,m,n,u'“&;f‘”(t)D'm,n,[Qj(t)]*, (21

of axially symmetric molecules will be studied in Sec. IV

and in Sec. V we will investigate linear m.olecules. Sectionwhere we took advantage of the diagonalityqﬁ"‘,, with

VI contains a summary and some conclusions. Some techn|- d andn [cf. Eq. (12)] ik

cal proofs are given in the Appendixes. respect td andn [cf 9 ' -

Replacement of; by X; introduces irp,. andj* an extra

Il. COVARIANCE OF THE MORI-ZWANZIG EQUATIONS: factor expiaqu;(t)]. Using the Rayleigh expansi¢a4], Eqgs.

ARBITRARY MOLECULES (18) and(19) we find

where the matrixR[ (2;(t)] rotates the SFF into the BFF of
the jth molecule. From Eg(20) we get immediately

Our main concern in this section is the change of the

equations of motion in the tensorial representation under a exp{ia&ﬁj(t)]=4w2 i'/j|,(aq)Y,,m,(Qq)*
shift of the reference point. Therefore, we will derive first in «!'
Sec. Il A the transformation rules for the slow variables and
their correlators. Then we will very briefly describe in Sec.
II B the derivation of the Mori-Zwanzig equation and will
finally prove their covariance. The reader should note thawherej;(x) are the spherical Bessel functions ang is the
the present section will not involve any approximation. orientation ofE|_

In the following we will also use the product rufé4],

XYy (WD [0, (22

A. Transformation under a shift of the reference point

Before applying the projection formalism we will just de- [i'(21+ )Y}, ()* [ (21" + 1) YD), (2)*]
termine the transformation ¢f, andj %" under a shift, "

=b,e[i" 21"+ )DL (Q)*], (23
X(D)—x(D=x;(O+au(t), |uO]=1, (14
where
Q;(H)—0,(H=0(t), (15) o
b or=i""" T2+ 1) (21" + 1) (21" + 1) 12
of the reference point positioﬁj(t) by aﬁj(t). From Egs. e e s
(14) and (15) we get with Eq.(8), XCUT";mm' m")C'1";nn'n")=b,.s . n
. (29
~ » auf(t), a=T,
v (O =y () + o= (160 andc(ll’'l”;mm'm") are the Clebsch-Gordon coefficients.
' ' With Eq. (16) and Eqgs(21)—(23) we find
The quantitiesp, andj“* for the shifted reference point - - N .
follow from p, and j%* by replacing in Eqs(4) and (7) PG =T (d:a,u")p,(a,1), (29
X, Qv by x;,0; v . p, and]¢* again are related by . T
the continuity equation I =Yoo M (aau)j " (a,0). (26)

;K(q,t):iqif,(q)*jif‘(q,t)zi[ﬁk(q,t); (170 The transformation matricek andY are given by

q%#,(q) will be given below. T (qa,u’)=4m(21"+1)" 12
In the body fixed framdéBFF) the shift is given by ) . -,
XJ|//(aq)Y|//m//(Qq) Y|//nr/(u )bK//KK/

uj (H=u’ (18 (27

for all molecules.ﬁj(t) in the space fixed framéFP and and
u' are related by ., .,
Y (gia,u) =T ge(gia,u)Usss # (a,u’),

K" k!

uj(t) =Ry [Q(1)]u"", (19 (283
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'S ot a=a’', ponent ofj ff‘(d,t), the set(l) and (') are not closed under

a shift of the reference point. Therefore, we have to choose

jR* ., u=0,+ as slow variables and an Although we

0, a=R, = could still choosej, since Eq.(36) shows that it is pre-
(28b) served, we also takﬂ”,ﬂ:o,t as additional variables.

Therefore, we introduce the projectors

U™ (@) =1 Ut @i, a=T, o=

KK

! - _ R ron
Uks, (a,u’)=3""Yaq, " u*bws . (289

P,= 2 [P ()S(A) TP (D],

Note thatT(q;a,u) andU(a,u’) commute with each other. e
It is obvious thafT(q;a,u) andY(q;a,u) form a group. (37)
Furthermore, it is easy to prove thatis unitary,

Q,=1-P,,

- - . o = paiM S 1) — 17@1ke1, Qoo : Qoo Sy
T(q;a,u’)T=T(q;a,u)_1, (29) PJ KlEKz |JK1 (Q)>[J(Q) ]Kle <]K2 (q) |'
aypy,appp

and that (38
U #(a,U")* =U" (—a,u’). (30) P=P+P,, Q=1-P, (39)

Equations(25) and(26) can be used in order to derive from and similarly for I3p= PP,P Py, P= P + PJ , Qp—l
Egs.(11) and(17), -P,, andQ=1—P. The final result(cf Refs [15,16)) are
o . the Mori-Zwanzig equations

G () =T oG, Un) g (@) LY (Gra,u) TH 8

= t - - R
S S<q,t)+fodt'K(q,t—t'>5<q)*15<q,t'>=o, (409
which yields fora=T,
Gh=qr, (32) Koo (6,0 = Gt DK (6,005 ()%, (40D)
- t R R -
and for «=R the connection betweeh,"mm, and LI i k(q,t)+f dt'M(q,t—t")J(q) *k(qg,t')=0, (400
0

which involvesg*.
The transformation law for the Hermitian matrices q
an

S(q,1) =[S (q,1) ] andJ(ﬁ,t)=[Jifr’“,"“/(ﬁ,t)] with “ji{aﬁ ,\EA ilar set withS,J,k,K,M,q’%, replaced by

m
,q%, . The memory kernels are given by

o s 1 - o s
It @=gie@rin @) G e Lo . aut
N K™ (a0 =g () * lexp(—1Q,LQ, i, (),

follows immediately from Eqs(25) and (26), (419
3q,0)=T(q;a,0")*S(q,1)T(q;a,u")}, (34) ama'n’ 3o L o
Mie™ " (@)= (L) |Qexp
J(a,=Y(g;a,u)*I(g,t)Y(g;a,u’)’, (35

(—IQLQOQIL}L ™ (@). (41
whereS, . (q,t) andj“”’“’”'(ﬁ t) is obtained from Eqg(6)

k and M is obtained by replacing®*,Q,,Q and,L b
and (33) by replacingp,, j“* by p,.] “*. y replacing;*,Q,,Q y

]K ,QP,Q andL. Making use of Eqs(25), (26), (34), and

. ) ) . (35 it is easy to prove that the projectors are invariant,
B. Covariant Mori-Zwanzig equations

Equationg26) and(28)—(30) demonstrate that the shift of P,=P,, P=P;, Q,=Q, (42a
the reference point introduces a coupling betw@é‘h and
TR For the longitudinal current density we get from Egs.
(26) and (28), T:'): P, 6: Q (42b)

and, therefore,

TR =T eer(q;a,u")[j L(0,0) +g»" U mJ . Theinvarianceof these projectors is of great importance.
(36) Taking Eqgs.(429 and (42b) into account we find with Eq.

26),
Because the second term in the square bracket cannot t()e)
expressed byf(ﬁ,t)=qfffjff‘(d,t) but involves each com- k(gq,t)=Y(q;a,u’)*k(q,H)Y(q;a,u")t, (439
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M(g,H)=Y(g;a,u’)*M(q,1)Y(g;a,u’)t.  (43b

Here we have used that for every phase space funé(ixin
andf(X), N

LX) =LT[X(X)], (44)

where the canonical transformatidifX) of a phase poink
is generated by the coordinate transformation Efj4) and

PHYSICAL REVIEW E 65 051206

We remind the reader that summation convention with re-

!

spect tok;, «/, /', and«!" is used. AgainM™CT(q,t) is
obtained by replacement of the corresponding quantities in
Egs.(45) by the quantities with tilde. Doing this and taking
Egs. (25), (26), (34), (42b, and (44) into account it is
straightforward to prove thab™CT and MMCT obey the
transformation law Eq(43b), i.e., MMCT is covariant.

For practical applications the vertices E#5) are further
approximated. Usin@=1-P, Eqgs.(37)—(39) and the her-
miticity of L we get

(15). Now, making use of Eq9.31), (34), (35), and (439,
(43b), it is easy to prove that the corresponding E¢$) for

the correlatorsy(q,t), K(q,t), etc., reduce to the Eq&40)

for S((i,t), K((i,t), etc. This result means that the Mori-
Zwanzig equations keep their form, or in other words, they
are covariant under an arbitrary shift of the reference point.

([Lig“(D]* Qp (A1) p,(T2))
= (24 * LLp., (A1) P (02)])

—[STH@D gD * Lo ()
Ill. COVARIANCE OF THE MCT EQUATIONS: > > >
ARBITRARY MOLECULES ><<pKé(q)*pKl(ql)pKz(q2)>' (46)
The MCT equations are given by Eggl0) where the ) ) ) )
The vertices become simpler if we apply the following ap-

memory matrixM and M are approximated. In Sec. Il we o : :
: : proximation for the static three-point correlatef. Ref.[16]
have shown that the Eq&10) are covariant under a shift of for linear molecules

the reference point. Accordingly the MCT equations are co-
variant if the MCT approximation and eventually further ap-
proximations for the vertices preserve the transformatior(p,(l(ﬁl)*pKz(ﬁz)sz(ﬁe,))
law, Eg. (43b). In order to investigate this covariance we

have to derive the memory matrid(q,t) and M(q,t) in
MCT approximation. This derivation is given in R¢l.6] in
great detail for linear and is easily extended to arbitrary mol- » o )
ecules[17]. Here we will repeat only those steps that areF© Such additional approximations we must discuss the
relevant for proving the covariance. The main idea of mcTmaintenance of the c0\_/ar|ant strugture. This means that we
. . . . a2 have to prove that the right-hand si@tas) of Eq. (47) trans-

Is to project in Eq.(41b) the fluctuating forceQLJL"(A)  forms Jike its left-hand sidélhs). For the Ihs we find with
onto a paierl(ql)pKz(qz) of density modes. Then the slow Eq. (25),

~N 6&1* agfagbkékékisklki( al) SKéKz( aZ) SKéK3( a?’) . (47)

part ofM(ﬁ,t) is approximated as follows:
(Prey(AD)* Py A2)Pcy(G2)*)

[M ™" (6.0 Jsiow v o
:Tlei(ql’a!u )*TKZKé(qz’alu )szké(q3!alu )

~[MMCT(q,t)]ake

X(p(A1)* py(G2) P (d))- (48)
1 - - -
=5N 2 war' w (qKK’|q1KlKi;q2K2Ké)SK1K1 o
dudz In Appendix A we prove the following identity fog,+ >
K1K2,K2K2

=q ()
X(qlvt)sxzké(qZ:t)' (453

bK KoK :TK'K (alaan’)*TK’K (aZ!aIG’)*TK'K
The vertices are given by e 272 e
e (49
Wk @k (qur’) ik ;O2K2K))

1 4 g Using Eqs(34) and(49) it is easy to prove that indeed the
= m[s (A0 Jwr,[S 7 (A2) L, LS (A2) Tt e rhs of Eq.(47) transforms like its lhs. Thus we can conclude
that the MCT equations including all approximations trans-
form covariantly under a shift of the reference point.

In order to determine how far these MCT equations sim-
plify for axially symmetrianolecules and reduce to the cor-
responding MCT equations for linear molecules presented in

X[S () Layur([LT (D) T* Qpr(Ar)p.cy(Ga))
X(par(@)* pp(G)* QLIS (@) (45b)
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Ref. [16], we have to determine the explicit form of the that involvesq;if’“(ﬁ) and making use of Eq55) one ob-
memory kernelMM€T(q,t). The MCT equations and the t5ins the explicit form fom(d,t)

memory kernel given in Ref.17] are not identical to Egs. n

(40) with memory kernel Egs(45) since in Ref.[17] we

. . !, = 1 o
used the rotational current density meker(g,t) = 5N > > vemas
q192 Kl"ir
A0 =1'2+ DY of#(0)e™OD10(1)]
! = - r. 2 ’ -
(50) X (Qrer’ [dryrOakoK2) Sep (At
in the BFF. The reason has been that those static correlators XS 0ot 58
. . s . K2K’(q21 ) ( a
that involve rotational current densities are much easier to 2

calculate in the BFF where the rotational kinetic energy does

not depend o#();}. In that case and whefq are the center- with the new vertices

of-mass positions, it is P - - ,
Ve (qrk'|qryK];OoKoK)

(0] ol ) =kgTI 1 S T5, (51)

2
Po ap = .
8772) K”ZK{ [q""K'i(ql)b"’l”‘Z"CK”Kl(ql)

To transform the MCT equations in BFF to those in SFF we
must determine the relationship betwgéf* andj?*. This
is easily done by use of a'p' = >
y y +(1<—>2)] 2 [qK”’/:T(ql)bK{’KéK’CK"’K:’L(ql)
K!/IK;’-/

o ()=D; , [Q(0]* 0" (1) (52)
. +(1=2)]*. (58b)
and the product rule Eq23). The result is as follows:
Ru, 'R = They involve the direct lation functions,. (q) that
JE“(q,t)=RZ,’:,JKB” @Gt (53 ey involve the direc correapn unc.|o S (q). at are
related toS,,..(q) by the Ornstein-Zernike equation
with the unitary matrix R,

-1
112 s<a>=(1—”—‘;c<a>) . (59)
C(All";umm )C(1I"; u'nn’). 87

R i1 21+1
e 21"+1

(54)  This equation is covariant due to the unitarity Tof
Note that (i) the vertices V**«'#" and, therefore,

Since p,(q,t)=p.(q,t), the continuity equation in BFF m““v“'“'(ﬁ,t) do not depend anymore v and{l } explic-

reads itly, and (ii) the MCT equations in the SFF and BFF have the
. i . . e . e N . . ap g
p(A,0=pL(G D) =10 (@)% ] 2*(q,1). serlmeaform and. differ only with respect tg,.,(q) and
a,.(q), respectively.
Then we get from Eq(11) with Eq. (53) and the unitarity of This means that they are covariant under transformation
R, from the SFF to BFF.
The static current density correlators become nsoaple
Tu (Nt T e 2 it
A (D=0, (Q), if x; are the center-of-mass positions. In that case we get
R’u' 3 = ,R’u’, ] 'MM, > k T ’
Q) =q (R, (55) 3T Ta (q)zﬁ(w St s (608

It follows from Eq. (40¢ that the long-time dynamics of the
MCT equations in SFF is governed by the kernel ena =
JKfj,' “(q)=0, a#a’, (60b)
m(q,t)=3"*a@M"T(q,)3"(q). (56) _ _
and fora=a’ =R with Eq. (51) in the BFF,
Substituting Eq(56) into Eq. (400 yields
I RuRI () =K TIT 1S4 S 15, (600

- .t - -
k(q,t)+J(q)f dt'm(q,t—t")k(q,t’)=0. (57
0 which with the help of Eq(53) leads to

’

As already mentioned aboq) andM™CT(q,t) can easily R Ry’ = , N
be calculated in the BFF. Taking the result from Ref7] Jewr Q=R RiG b keTly S8 (60d)
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whereJ;f?’RO((i) depends explicitly or{wj’“zo} which are
constant due tdn_]-”‘:ozconst. In principle, this should ex-
In this section we will choose; as the center of mass clude{w;*} from canonical averaging. If one is only inter-
positions, because then the equations become most simpgsted in the slow dynamics of supercooled liquids the rota-
due to the axial symmetry. The equations for arbitriry tion around the symmetry axis is not particularly interesting.

ru=0 —
follow from Egs.(40) by the use of the transformation laws Therefore, let us take;”"(t)=0 that leads to
(34), (35, and (434, (43b). In that case axially symmetric

IV. MCT EQUATIONS FOR AXIALLY SYMMETRIC
MOLECULES

s tRu=0/7 ¢\
molecules are characterized by two properties. First, two of « (g,0)=0 (68)
the moment of inertia are equal,
and, therefore,
[i=1,=1, l3=1"#I, (61 R
JIRORO(@)=0. (69)

and second, the potential energy does not depengygn

R . Taking Egs.(67) and(69) into account we get in the SFF,
VXA ), 0, xj+ AxiH=VExH{ 95,05, x}) - ©2

R,u RM/ - kBT ’ ’u’u/
_ _ o _ Jwr - (A)=——(8" 6, =C ) (70)
Equation(61) makes the rotational kinetic energy indepen- |
dent of {x;}. This together with Eq(62) implies that the .
component of angular momentun' ~*=L/#~° (in the with
BFF) is a conserved quantity for each molecule. A second ! LO% o 1’0
consequence of axial symmetry is the diagonality of the cor- Clxr =R Rier - (71)
relators with respect ta,
The unitarity of R yields immediately
SKK'(q:t):Slmn,l’m’n(qit)5nn’ ) 2
C°=C, (72)

JKK'(C_iyt):Jlmn,l’m’n(aat)énn’ . (63

For the static density correlators one can even prove that

Saw(@), (n,n")=(0,0,

(64)
S (n,n")#(0,0),

SKK’(&):

kK1
with

S (@)=Simoy mo(Q), (65)

and A= (Im). Equation (64) together with the Ornstein-
Zernicke equatiori59) yields for the direct correlation func-
tion

Cer (@) =27Cy\ () SnoSnn » (66)

cw(ﬁ)=(1/27T)c,m0’|,m,0(ﬁ) is the direct correlation func-

tion determined byV({x;},{ ¢;.6;}). The missing third
anglesy; introduce the factor # in Eq. (66). The fact that
c..(q) vanishes for ,n")#(0,0) will strongly simplify
the mode-coupling matrim(ﬁ,t).

The static current density correlatdia case thab_(} co-
incides with the center-of-mass positioalso become sim-
pler due to Eq(61). Jif;“’”’((i) is still given by Egs(603
and (60b) for (a,a’)#(R,R), and fora=a'=R one gets
from Eqgs.(600 and(10),

(. ") #(0,0),

(p,")=(0,0),
(67)

kgT/1 848, 1,
JIRO,RO(C':I’)

KkK'

3R @)=

KkK'

i.e.,C and thereford— C, too, is a projector. Equatiori§3),
(68), and(71) leads to

cH iR (g,0* =R 4% [ 1(a)* =0,

K"

(73

i.e., C projects out the rotational current density in the SFF.
The choice Eq(68) that has led to Eq(70), introduces a

problem since the inverse Dﬁffj;R“’(ﬁ)] and, therefore, the
inverse of[Jif}“’“(ﬁ)] does not exist. This is becaude

—C is a projector. Howevedfl(ﬁ) has been used iR; for
the derivation of the Mori-Zwanzig equations, only. In that
case we have to choo$t =P+ P;r as follows:

— iTrey M T q)*
Pir=2 IOz @, (743

I ! !
R= iReCa)y —(sur’ 5 —CEH Y GRE ()
Pin= 2 [I4(0) g (8 e — Ci NI (0"
won!
(74b)

Note that the explicit form oP;r only holds if the reference

pointij coincides with the center-of-mass position. It is easy
to prove thatPr is a projector. It simplifies due to E73)
to

_ ‘R, I TR S\ *
PjR_% |JK(Q)>WBT<JK“(Q) l, (740

such that
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P= >

(@Y IOG T Y (4 (g)*],

a,u,a’/ﬂ
(79
with
an.a'w = kBT ,
I () =N 8 81 By (76)
and
M, a=T,
l,= 7
=1, _R. (77

Using P, from Eg. (37) and P; from Eq. (75 one gets
the Egs.(40), (56), and (57), where J(q) is replaced by
J©)(q). The MCT approximation fom(q,t)=[J®(q)]~?*
M(q,t)[I©(q)]~! is identical to the result Eqs(58a),
(58b), i.e., the explicit expression fan(q,t) does not de-

pend on whether we ignore the conservation mwzo or
not.

PHYSICAL REVIEW E 65 051206

that it is the only solution. Therefore, we assume that

Smw/(ﬁ,t)zo for n#n’ is the only solution. Then it fol-
lows that

apa' w2 auae w2
m)\n,)\’n’ (q't)_m)\n’)\/n (q,t)(snn/.

(79

Hence the MCT equations become diagonal andn’. This
has the important consequene#. Eq. (78)] that the MCT
equations forS,,(q,t), which involvemfgx‘f;“’(c],t) only,
are closed, i.e S,y for n#0 do not influences,, (q,t).
But in contrasIS)\nv)\,n(d,t) for n#0 depend orSM,((i,t).
The MCT equations fosw(ﬁ,t) for axially symmetric
molecules then are given by Eg&0a, (40b), and (57)

where alln,n’,n", etc., has to be set to zero and by the
memory matrix

M (a,0=(2m)2m  # (g,0) (80)

with
a;l,,ut,,u.' - 1 ap a’,u' - - ’.
mELE () =o D X VB (AN [gah N ]
2N ,
192 )\1)\1
APYA

After this more general discussion we can now apply Eq.

(66) to Egs.(58a and(58b) in order to ge’mif;“/“/(ﬁ,t) for
axially symmetric molecules. The result is as follows:

a a! r - 1 -
M A =5 2 2 [C-)S(@nD) S
Q102 Aqhg
Aohg

X (g, 1)+ (- ) Sy nazn (A1, Sy, 1)
+ (- )Sy 00107 (A1,8) Syynago(dast)

+ (- S0l DSy 0npnr (2,11
(79)

Here we used Eq64). (---) stands for the corresponding

vertices. The first observation is thalf:f,’“"‘l(ﬁ,t) is obvi-

ously not diagonal im andn’, because we are not allowed
to assume that Eq(63) also holds for the solutions

SMCT(q,t) of the MCT equations. The diagonal elements

decompose into two types. The elements withn’ =0 only
involve a bilinear productSAlxi(ﬁl,t)szxé(ﬁz,t), i.e.,
correlators for whichn,=n;=0 and n,=n;=0 whereas
the elements  with n=n'#0 contain, e.g.,

SAM(E]l,t)Skzmén(ﬁz,t). The nondiagonal elements also

contain nondiagonal correlatofi n andn’) that in prin-
ciple should vanish because of E@3). Indeed, we will
show in Appendix B that the MCT equationg0) with

m(q,t) from Eq. (78) imply that Saﬂn?;,n/(ﬁ,t)zo for n

X A2A2N5) Sy 1 (A1, DSy (d2,1),

(813
VRS R (NN [A1N NS 5 GoA N D)
Po 2 -
- (E) ;H [q:#A’l’(QI)bx’l'xzxcwml(%)
IO
+(1(—>2)]}\%W [q:w/;{/(az)b)\/]’-/)\é}\IC)\m}\i(q_;)
1
+(1<2)]%, (81b)
and
qffr(a)qug,wo(a), (82a
Paxr = DBroaronro- (82b

V. COVARIANT MCT EQUATIONS FOR LINEAR
MOLECULES

In this section we will investigate two points. First of all
we will derive Mori-Zwanzig equations and an MCT expres-
sion for the corresponding memory kernel for linear mol-
ecules that are covariant under a shift of the reference point.
Second, we will show that these equations can be obtained

from those for arbitrary molecules by taking into account the

axial symmetry.
Linear molecules havé’=0. This property makes the

angular velocityﬁj(t) always perpendicular téj(t), the unit

#n’ is a solution and we will prove under certain conditionsvector along the symmetry axis of théh molecule. In the

051206-8
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BFF whereé]-(t) is presented bﬁj’E(0,0ll) we, therefore, can follow directly the argument in Sec. IV in order to show

get
w{*~(t)=0. (83

The tensorial density,(q,t) and current density®*(q,t)

(as used in Ref[16]) for linear molecules are related to

p.(a,t) [Eq. (@] andj*(q,t) [Eq. (7] by
pr(0,1)=pyo(a,t),

iTa,0=js4 ., (84)

i.e., we have to puh=n’=0 (almos) everywhere for quan-
tities of arbitrary molecules in order to get the correspondin

that the projectoP; is given by

Pi= 2 i @) Q@@ 1 H G (¥
AN
e (92
with
! ’ - k T ! r
I (@ =NT e 5 (99

a

We note that the resu{®2) can also be obtained from; [cf.

gEq. (38)] for arbitrary molecules by choosing firs{=1,

=1 and taking the limit ;=1" to zero, and second using Eq.

quantities for linear molecules, provid&g is chosen on the (91) and finally replacingc by \. Use of P, from Eq. (37)
. o .

axis of the linear molecule. This rule does not apply, e.g., tq,;

the rotational current density in the BFF since E(E3),
(54), and(84) imply thatj;“(q,t)~ &, . Due to Eq.(83)
it must be

-

inRo(q,0)=0 (85)

for all n.

The rotational part of the static current density correlator
can also be calculated without the detour via the BFF as done
in Sec. Il [cf. Eq.(60d)]. The calculation is straightforward

but tedious. Therefore, we give the final reqalgain forij ,
the center-of-mass positinronly

JReRE () =kgTI 1 64" 5,,, —CM ], (86)
where
CH=RITREY, (87)
with
RAL =Rib o (89)

andR’:,’f,, from Eq. (54). Note that Eq(54) leads to
R\orn=R v Sno- (89)

It is easy to see that the results fﬂ)?’;;R”’(a), C;‘{‘ and

th xk—\ andP; from Eq. (92) we get the Mori-Zwanzig

equations for linear molecules when the reference pfqint
coincides with the center-of-mass position,

Sxx'(a,t)
+ [ UK (G- @ LSy (G2 =0
(943
Ky (G0 =0 (@K # (4,008 4 (9%, (94D

o s t non s
et @0+ [ e G-
X (LI ] D K (0,1 =0.
(940

These equations are identical to those fS;;)\,(ﬁ,t)

ESMM,O(ﬁ,t) of axially symmetric particles. But they
differ from the corresponding equations in Ref16],
due to the presence of the and u’ dependence in Egs.

(94b and (949. MCT approximates[M(q,t)]sow bY
MMCT(q,t) where [MMCT(d,t)])‘X‘;“/”’ is given by
Egs. (45 but all x replaced by\. The corresponding
vertices W # (QAN'| 01N 1N ] Oah 2N D) involve

R“" for linear molecules are identical to the correspondingtLLix" ()17 Qpx,(d1)py,(d2)) that can be calculated by us-

AN/
guantities for axially symmetric particles but with=n’
=0. Furthermore, we can apply E@9) to prove that

CLrCl =l (90)
and
criRi(g,t* =0, (91)

where we also used Ed85). This demonstrates that

ing (i) L=V, (Q;)=a; 7Y, (2;)=0, since the zero com-
ponent of the angular momentum vanishes for linear mol-
ecules in the BFF andi) the approximation for the static
three-point correlatotp, (d1)*py,(42)pa,(0s)) as used in

Ref.[16]. Note that this approximation also follows from the
result Eq.(47) for arbitrary molecules by—\. Taking all
this together one finds for

m(q,t)=[IO(q) ] *MMT(q,0)[I ()]t (99

=(C’”") and, thereforel—C, too, is a projector. Now we that

AN/
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! ! - 1 ’ !
M@ =gy 2 2 Ve
G102 AqAp
Aok

X (GAN'[h N §az)\27\§)s>\l>\1(al )

XSy (0.0, (963

with the new vertices

Ve m (MN[0 N ] 5 GN o\ D)

2
Po @ — -~
- (E) > [qx#wlr(%)bxgxzxcx"xl(%)

my
AN

+(102)] 2 [aRin(d)bayap Cuny(ar)

"
O

+(1-2)]* (96b)
with q°%,(q) andb,, ., from Egs.(82a and (82b), respec-
tively. Comparison with the result Eq&81a and (81b) for
axially symmetric particles and=n’=0 reveals complete
agreement.

What remains is to prove the covariance of the MCT

equations for linear molecules under a shift Egs.(14) and

PHYSICAL REVIEW E 65 051206

It is obvious thafT (a) andY(a) have all the same properties
like the corresponding quantities for arbitrary molecules.
For the derivation of the equations of motion for the
shifted reference point we have to be cautious again with the
projectorP;. As seen beforeR; for linear molecules can be
obtained fromP; for arbitrary molecules by the procedure
described below Eq93). We also use this approach to de-

termineP;=P;. This yields

DY

Ter(@)(IO(a) ]~ Hes ' G (q)%),

NN
e (101)
where
JO(q)=Y(q;a)* I(q)Y(q;a)". (102
P,=P; is obviously given by
B,=2 [p(@)S D (pr(@]*. (103
NN

Now it is easy to provélike for arbitrary moleculesthat the
projectors are invariant, i.e.,

p p1 PJ:PJ . (104)

(15)] of the reference point. For linear molecules we restrict

the shift Gj(t) for simplicity along the symmetry axis. One

can also consider aarbitrary shift. But in that case one
must use the tensorial quantitips(q,t) andjﬁ“(ﬁ,t) with
n=0, even for linear molecules. Choosiﬁgt)zéj(t) we
get as a special case of Eq25) and (26),
A =Th(G;2)py (a,), 97
A=Y (ga)jn (g, (98)
Sinceu’ =(0,0,1) it follows from Eq.(27),
T (G:2)=Tyoro(d;a,U")
= A 2 j1n(aq) Y m(Qg)* by (99)
IHmH

and from Eqgs(28),

YR (gia) =To(@a) Ui * (a), (1009
5#,11.'5)0\’, a=a',
Ui (@) =4 UM (@), a=T, a'=R,
0, a=R, o'=T,
(100b
ULt (@)=3"Y2ag” by . (1000

This fact together with the transformation rules E&¥) and
(98) can be used in close analogy to Sec. II B to prove that
the Mori-Zwanzig equations Eq&944a, (94b), and(94¢ are
covariant under a shift of the reference point.
ThatMMCT(q,t) andm(q,t) for linear molecules are also
covariant can be proved by use of E¢87) and(98), and

Py an = Txixl(al a)* Txé)\z(az ) T}\é)\S(&3 ; a)bxixé g

(105

which follows directly from Eq(49). The proof of the cova-
riance ofMMCT(q,t) andm(q,t) follows exactly the same
steps as in Sec. Ill for arbitrary molecules. Accordingly the
MCT equations(94a, (94b), and (94¢ with the memory
matrix given by Eqgs.(95), (963, and (96b) including all
approximations are covariant in contrast to the MCT equa-
tions presented in Ref§l5,16.

VI. SUMMARY AND CONCLUSIONS

We have derived equations of motion for the correlators

SKK,(ﬁ,t) andSM,(ci,t) in thetensorial representatiofor a

liquid of arbitrary and linear molecules, respectively. These
equations do not change their form under a shift of the ref-
erence point. The form invariance also holds for the MCT

- . . a#’a’#’ >
approximation of the memory matrii ’; (g,t) and

M;’}’f;“’“’(ﬁ,t) including all approximations for the vertices.
This so-called covariance means that if one has obtained a
solutionS¥€T(q,t) for one choice of the reference point, one
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obtains the SOMtiOlﬁéMCT(&’t) for another reference point Here a comment may be in order. To obtain the explicit

just from time dependence @&, (q,t) from the MCT equations they
have to be solved numerically. This numerical treatment re-
SVCT(q,t)=T(g;a,u’)*S"T(q,n)T(q;a,u’)". quires a truncation of the infinite-dimensional matrices at
(106) =l.,<e. This truncation destroys the covariance &bi-

trary shifts au’ of the reference point. Becauﬂ'ﬁ((i;a,l]’)

—1 and Y(g;a,u’)—1 for a—0 the physical properties,
however, will be practically the same foa" small enough.

As shown in Sec. Il, the original MCT equations for arbitrary

moleculeg/17] are indeed covariant, but this is not true for

the linear molecule in an isotropic liqu[d 5] and the liquid . i .

of linear moleculeq16], as already stressed in R¢f.9]. Oft.'” c|>trt1er wordts. fc_)rr gl\/timco and'atccu:acy:;, of, e‘ﬁ"t;hi

Since the covariance guarantees that the physical properti 15' ical temperatureT;, there existsa(lc,,d) such tha
(a#0)—T(a=0)|< s for all a<a(lg,,d). It is obvious

do not depend on the reference frame it is important fo h ey itH d that i LS
molecular liquids of linear particles to use E¢@4a, (94p),  thata(leo,d) increases with ¢, and that lim_ ..a(lco.9)

and (940 together with the memory matrix from Eq®5), =0, ]
(963, and (96b). The modification for a single linear mol- ~ Now, the reader may ask: If one would be able for linear
ecule in an isotropic liquid is straightforward. molecules to solve the original noncovariant MCT equations

The ideal glass transition is an example for which the[16,18 withouta | cutoff and would compare with the solu-
physical behavior should be independent of the referenction of the covariant equations with,<, how could one
point. The MCT equations first derived by '@e and co- disentangle the effect of noncovariance due to the incorrect
workers[4—6] for simple liquidsyield a transition at a criti-  structure of the former equations from that due to truncation?
cal temperaturd, or a critical densityn, from an ergodic  If I, is rather small, e.gl,.,=2, it is not possible to disen-
(liquid) to a nonergodic phas@lass. This transition is in- tangle both effects. But, we do not expect amyalitative
terpreted as an ideal glass transition. The extensiomde  difference for the glassy properties such as the glass transi-
lecular liquids has been done in RdR0] within a site-site  tion point or the long-time dynamics. These features will
description and in Ref§15—17 by use of the tensorial rep- differ from each other onlguantitatively On the other hand,
resentation. In this respect we mention that the reported fore.g., the nonergodicity parameté@n,wm,n/(ﬁ) converge to
mulas in Ref[20] did not yield the correct equations in the zero for increasing andl’. Therefore, if one systematically
isotropic limit, i.e., where the particles become sphericalincreased, in the covariant theory, the quantitative error
The corrected equations were presented in Rif]. due to truncation can be made rather small. Although this has

The nonergodicity — parameters |:KK,((j):|imt_mc not been checked for a molecular liquid up to now, we can

S, (q,1) and F,,.(q)=lim,_.. S,,+(q,t) change aff, or  imagine thatl,,=10 already yields rather accurate results.
KK L — 0 L . - . .
n. discontinuously from zero in the liquid to a nonzero valueence, variation ofl, for the covariant set of equations

in the glass. Since it is for, e.g., arbitrary molecules, allows us to disentangle both effects, although the present
computational power is not large enough to stuigly= 10.
R 0, T>T, or n<ng, The crucial point for the covariance ftinear molecules
limS,,(g,t)= - has been the use of each individual component ofroie-
tooo Few(q)>0, T<Tc or n=nc, tional current density as a slow variable. Although not nec-

5 R 5 R essary, this has also been done for the translational current
we get from Eq. (106 that F,,.(q)=lim; .S, . (q) density in order to allow for a coupling to transvefseans-
changes from zero to nonzero at t@mecritical point. This  lational) current density, as it was done in R¢L8]. This
demonstrates that the covariance leads to a glass transiti@hoice for linear molecules is not only essential for the co-
that does not depend on the reference point. variance of their MCT equations but also that one can derive

Furthermore, the covariance assures that the same is trtiee MCT equations for linear from those for arbitrary mol-
for the critical exponeng, the von Schweidler exponebt ecules by choosing;=1,=1 and taking the limitl;=1" to

that desgribe the time and frequency dependence in thgaro. We have also shown trﬁ%m,o(a,t) for axially sym-
ﬂ-_fe|axﬁ“0n rengE{S]d'and for thefe;gorllent/_that_detebr- metric molecules decouple from all the other correlators
mines the power law divergence of therelaxation time by g &1y n>0 and obev the MCT equations for linear
approachingT ., (or n.) from above(or below) [5] provided, kagigcnlgli;s) 25 one expectsy a

o , .

these scaling laws are valid for the molecular versi_on To conclude, we can say that the tensorial formalism of
MCT, a? \;]vell. These few fe>r<]amples demonstrate the impOfg,giecylar dynamics allows us to derive covariant equations
tance of the covariance of the MCT equations. of motion even including the MCT approximation and that

_In addmon, the covariance also.guar.ar]tees that the longp corresponding equations of motion for linear molecules
time dynamics and the glass transition is independent on th

S ; N N&re a special case of those for arbitrary ones.
inertia parameterd! and{l;}. This means that the properties

of the long-time dynamics obtained from the covariant MCT
depend on the potential energy landscape only. This nicely
agrees with recent numerical investigations for simple lig-
uids [11-13. It would be interesting to perform analogous | am grateful to V. Bach for the helpful suggestions on the
numerical studies for a molecular liquid. proof presented in Appendix B and to W. @e for his con-
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APPENDIX A Ky Koks
In this appendix we will prove the identity E¢49). Let (A4)
for the following expression:
p©O(G,%,0)=i'(21+ )%PD!_(Q)* (A1) g &xp
1
and d®x f dQpO(qy,x,Q
v 877 P (Q1 )
p0q.x.0)=p7(q.X,0), (A2)
xp (a2, %,2)pV(0z,x,Q)*
then we have from Sec. I,
= d1+d2'd bK1K2K3' (AS)

P(AX,0) =T, (q;a,U"),p(A,%,Q).  (A3)
On the other hand we can use E43) to calculate the Ihs of
Then we get Eqg. (A5) which yields

11

Ihs of Eq.(A5) =Tt (A1;a,U" ) Ty (i U) T o (GiaU")g —; .
’7T

% [ o[ @00 501596 %,0)pS6.%,0)"

_ 15 a1\ T* 1N a1\ 1/~ a1/
_[T (qlravu )]K]’-Kl[T (qZ!a!u )]KéKZ[T (q31avu )]KéK3bK:’LKéKé1 (AG)
|
where we used the unitarity df. Comparison of the rhs of It is easy to prove thaB,, . (q,t)=0 for n#n’ is a
Egs. (A5) and(A6) yields the identity Eq(49). solution of the MCT equations. We will prove that it is the
only solution. To proceed we decompose the correlation ma-
APPENDIX B trices in their diagonal and nondiagonal part with respeat to

. . . . . andn’, which will be denoted by’( and (), respectively.
In this appendix we will prove that under certain Cond"Then we get from Eqs403 and (57),

tions the nondiagonal elementssm)\,n,(d,t) and
ki‘r’f”fﬁ’n’f,(ﬁ,t)(nin’!) of the MCT solutions vanish for atl S(Git)=— ftdt’J't’dt”[K’(ﬁ 't S () 1S (Gt
for axially symmetric molecules provided the reference point 0 0

i,- coincides with the center-of-mass position. R Ly P
First of all it is rather easy to prove that +KY(q,t)S(q) S (a.t' = t")

) +K"(q,t' —t")S'(q) 1S"(q,t")], (B2)
?S)\n,)\’n’(Qat)|t:O:01 ¢ N
k”(q,t):_\],(q)JOdt, fo dtll[m/(q,tl_t//)kll(q,t//)

J apu, ’ - -
Ekm’ﬁ,n‘f (9.)]—o=0(n#n"), (B1) +m"(g,t")k’(q,t’ —t")

for all »=0. This follows by induction from Eqs(40a, Q. —tkg, )] B3)
(40b), and(57) with m““'“'“'(a t) from Eq.(78) by taking  Here we have integrated Eqel0g and (57) over time and
|nt0 account the |n|t|a| Condmon g|ven by Equ) for v used the initial Cond|t|0r(Bl) for v=0. Furthermore the
=0 and 1. If solutions of the MCT equations were analytic, static correlator§(q) andJ(q) we used were diagonal im
Eq. (B1) would hold forall t. Concerning the smoothness we andn’. We want to prove that the quantities on the lhs of
will only assume continuity irt in the following, and not Eqs.(BZ) and(B3) are zero. For this we will make the fol-
analyticity. lowing assumptions for the diagonal elements:
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sup 2 [S], (0] =Se<», (B4a)
t,g,n AN
sup 2 [[K(Q,1)S' () ynarnl =Ko<, (BAb)
t,g,n NN\
sup sup >, |k’ }‘frﬁ"‘}\‘ﬁlrf‘/(ci,t)|:ko<oo, (B4o)
tLan 40" AN
wop!
sup sup>, [[3'()m’ (G015 [=mo<ce,
t,ﬂ,n a,a')\v)\’
o'
(B4d)
and for the nondiagonal elements,
supsup X, |S..(q,b)|=o(T)<=,  (B5a
t<T § «,«’
supsup > [[K"(Q,)][S(Q) Her| = k(T) <o,
t<T g K,KI
(B5b)

supsup sup >, |k”i”‘K‘,"”“,(ﬁ,t)|=y(T)<oo, (B50)
t<T g

"ok’
a,a ’

’
Mo

and for the vertices,

1 a aH ”n o s
supsup supo X X [T (a)

q102 kK ,a ', u

’
’
Mt K2Ké K, K

4 a,a’ KlKi

XV B (g ! |‘iK1K1 JCEKZKM =Vo<». (B6)

Note that in Eqgs(B5) the supremum is taken oveT,
only.

Due to the continuity of the correlators and due to Eq.

(B1) for v=0, itis
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The upper bound on the rhs of E@®8) converges to zero
due to Eq.(B7). Next, making use of Eq$B4), (B5), and
(B8) we find from Eqs.(B2) and (B3),

supsup >, |S.,..(q,1)]

t<sT § «,«’
s[Koa(T)JrsOK(T)Jra(T)K(T)]%T2 (B9)

and

supsup sup >, [K” 4 (q,t)| <6[mey(T)

t<T g aa’ K,k

’
s

1
Vo[ Soto(T)Jo(T)[ko + V(t)]]ETZ. (B10)

where the factor 6 in Eq(B10) originates fromZ, ,»1
=6.
Now let

o(T)+k(T)+y(T)=u(T)>0, (B11)

then we get from Eq94B9), (B10), and(B11),
u(T)<{[Ko+ Sy+6m,+6V,Soko+1]u(T)
1
+[1+6Vo(ko+So)]MZ(T)+M3(T)}§T2, (B12)

where we used the relation, e.g.,
a(T)k(T)<u?(T), etc.

Since the coefficients oi”(T) on the rhs of(B12) and
w(T) are positive, ange(T)—0 for T—O0 it is obvious that
there is a finiteT,>0 such that folT<T, the rhs of(B12)
becomes smaller than its |lhs due to the fadtbrwhich is a
contradiction. Therefore, it must ba(T)=0, for all T
<T,. Sinceo(T)=0, «(T)=0, and y(T)=0 Eq. (B11)
implies that

that(T) < w(T),

o(t)=0, «(T)=0, ¢T)=0, VT=<T,,
and this in turn proves that the nondiagonal gartn and

n'!) of the correlators vanishes far<T,.

o(M—=0, «(T)=0, ¥»M—0, T-0. (B To prove that this result holds for afl one restricts Egs.
Now, taking the modulos of the nondiagonal partgii?g)’ (40b), and (57) to t=T, with the new initial condi-
m” o5 “/((i,t) from Eq. (78) one gets with Eqs(B4) and ’
(B6), ) e ,
S}\n,)\’n’(QvTo)ZO, k)\nyv)\rnr (q,TO):O, n7£n .
(B13)

supsup sup > |[J'(q)m"(q,t)]% * |

ST 4 40" Kk

Introducing the “shifted” functions
o'
<V [S,+o(T)]a(T). (B8)

S (@,D):=Snam (0, To+t),  etc., (B14)

051206-13



ROLF SCHILLING PHYSICAL REVIEW E 65 051206

the Egs.(B2) and (B3) keep their form forS’(q,t) and T<T,T<T,+T1,. Now “shifting” again by T,+T, the
k”(q,t) with the only difference that thet(—t")-dependent equations forS’(g,t) and k”(G,t) are the same as for
kernels are the old ones. Then, following again the procedurg’(g,t) andk”(q,t). Therefore, it follows that the nondiago-

described above, one finds that there exigts 0 such that nal part of the correlators vanishes fo T, + 2T, . Iterat-
the nondiagonal part of the correlators vanish foring this procedure infinitely many times completes the proof.
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